Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 549-560    DOI: 10.11900/0412.1961.2015.00408
  论文 本期目录 | 过刊浏览 |
第二、三代镍基单晶高温合金含Hf过渡液相连接*
郁峥嵘1,丁贤飞2,曹腊梅3,郑运荣1,冯强1,4()
1 北京科技大学新金属材料国家重点实验室, 北京100083
2 北京科技大学国家材料服役安全科学中心, 北京 100083
3 北京航空材料研究院先进高温结构材料重点实验室, 北京100095
4 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY
Zhengrong YU1,Xianfei DING2,Lamei CAO3,Yunrong ZHENG1,Qiang FENG1,4()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
4 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2138 KB)   HTML  
摘要: 

采用无B的含Hf镍基合金作为中间层合金, 分别对含Re的第二代镍基单晶高温合金 (CMSX-4, 铸态) 和第三代镍基单晶高温合金(SXG3, 完全热处理态)进行过渡液相(TLP)连接, 并分析了连接区的显微组织演变以及降熔元素分布, 测试了连接区的显微硬度. 结果表明, 在1290 ℃真空保温24 h后, CMSX-4和SXG3合金的TLP连接均已完成, 2种合金的TLP连接过程也均符合经典模型. 以含Hf的镍基合金作为中间层合金时, 在连接区内没有出现扩散影响区. CMSX-4合金的固溶处理可在TLP连接过程中同步完成, 缩短了热处理工艺. SXG3合金中的C与Hf结合在液相中形成固相HfC, 降低熔体中Hf浓度, 缩短了等温凝固阶段的时间. 研究表明, 通过含Hf的TLP连接可以研究小角度晶界的界面稳定性, 其中在1150 ℃保温热处理后, SXG3合金小角度晶界出现不连续脱溶转变的临界区间在10°~17°之间.

关键词 镍基单晶高温合金TLP连接含Hf中间层合金显微组织    
Abstract

A Hf-containing Ni-based alloy was used as the interlayer alloy of TLP bonding for the 2nd (CMSX-4, as-cast condition) and 3rd (SXG3, standard heat treatment condition) generation Ni-based single crystal superalloys containing Re in this work, and the microstructure, composition and micro-hardness of bonding zone were characterized. The results show that the TLP bonding of CMSX-4 and SXG3 alloy were completed after bonded at 1290 ℃ in vacuum for 24 h. These TLP bonding process of CMSX-4 and SXG3 alloys can be explained well using classical TLP model. The diffusion affected zone was not observed during the TLP bonding process. In addition, the heat treatment process of CMSX-4 is shortened by 24 h resulted from the solid solution heat treatment of CMSX-4 alloy has been completed after the process of TLP bonding. The isothermal solidification stage of SXG3 alloy was also accelerated due to the precipitation of HfC at the bonding temperature, resulting in the reduced Hf concentration of Hf in the melting zone. This work also indicates that the interfacial stability of low angle grain boundaries can be investigated by the TLP bonding. The critical misorientation value for discontinuous precipitation of SXG3 alloy along TLP bonding grain boundaries by Hf-containing interlayer alloy was in between 10° and 17° after heat treatment at 1150 ℃.

Key wordsNi-based single crystal superalloy    TLP bonding    Hf-containing interlayer alloy    microstructure
收稿日期: 2015-07-23      出版日期: 2016-01-05
基金资助:* 国家自然科学基金项目 51071016, 国家高技术研究发展计划项目2012AA03A511和教育部技术支撑重点项目625010337资助

引用本文:

郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY. Acta Metall, 2016, 52(5): 549-560.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00408      或      http://www.ams.org.cn/CN/Y2016/V52/I5/549

Alloy Cr Co Mo W Ta Re Al Ti Hf C Ni
CMSX-4 6.5 9.0 0.6 6.0 6.5 3.0 5.6 1.0 0.10 - Bal.
SXG3 4.0 12.0 2.0 6.0 7.0 5.0 5.0 - 0.15 0.02 Bal.
Interlayer 4.5 18.6 - 4.7 - - - - 25.60 - Bal.
表1  合金的名义成分
图1  过渡液相(TLP)连接的试样装配示意图
图2  CMSX-4合金经1290 ℃保温不同时间后基体合金和TLP连接区的SEM像
图3  CMSX-4合金经1290 ℃保温后, MZ平均宽度和Ni5Hf相在TLP的MZ中相含量与保温时间的关系
Phase Cr Co W Ta Al Ti Hf Ni
Ni5Hf 2.5 7.7 - - 1.0 - 40.3 48.5
γ' phase in eutectic 4.9 9.5 4.9 8.5 6.0 2.0 10.8 53.3
表2  CMSX-4合金经1290 ℃保温15 min后TLP连接MZ中Ni5Hf相和共晶团边缘γ'相的平均成分
图4  CMSX-4合金经1290 ℃保温15 min后TLP连接区的SEM像及γ+γ'共晶团中Hf元素分布
图5  CMSX-4合金经1290 ℃保温6和24 h后TLP连接区及附近基体合金中Hf元素的浓度分布
图6  CMSX-4合金经1290 ℃保温24 h后垂直于TLP连接界面的纳米压痕路径区域硬度和弹性模量
图7  SXG3合金经1290 ℃保温不同时间后TLP连接区的SEM像
图8  SXG3合金经1290 ℃保温6 h并淬火后TLP连接区的SEM像
图9  经TLP连接后SXG3合金的OM像及该连接试样经1150 ℃保温热处理5和25 h后的SEM像
[1] Pollock T M, Tin S.J Propul Power, 2006; 22: 361
[2] Rolls-Royce. The Jet Engine.Derby, United Kingdom: Rolls-Royce Plc, 1986: 45
[3] Kercher D M.US Pat, US3533712 A, 1970
[4] Godfrey D G, Morris M C, Menon M.US Pat, US20130195673 A1, 2013
[5] Finn S R, Schilling J C, Lin W W L, Dindar M, Tyler R P.US Pat, US6607358 B2, 2002
[6] Qu W Q, Zhang Y H.Weld Technol, 2002; 31(3): 4
[6] (曲文卿, 张彦华. 焊接技术, 2002; 31(3): 4)
[7] Duvall D S, Owczarski W A, Paulonis D F.Weld J, 1974; 53: 203
[8] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[9] Tokoro K, Wikstrom N P, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2008; A477: 311
[10] Bakhtiari R, Ekrami A, Khan T.Mater Sci Eng, 2012; A546: 291
[11] Li X H, Ye L, Zhong Q P, Xiong H P.J Aeronaut Mater, 2011; 31(6): 1
[11] (李晓红, 叶雷, 钟群鹏, 熊华平. 航空材料学报, 2011; 31(6): 1)
[12] Lang B, Hou J B, Wu S.J Mater Eng, 2010; (10): 32
[12] (郎波, 侯金保, 吴松. 材料工程, 2010; (10): 32)
[13] Li W, Jin T, Hu Z Q. Acta Metall Sin, 2008; 44: 1474
[13] (李文, 金涛, 胡壮麒. 金属学报, 2008; 44: 1474)
[14] Liu J D, Jin T, Zhao N R, Wang J H, Liu J L, Sun X F.Rare Met Mater Eng, 2007; 36: 332
[14] (刘纪德, 金涛, 赵乃仁, 王金辉, 刘金来, 孙晓峰. 稀有金属材料与工程, 2007; 36: 332)
[15] Jalilian F, Jahazi M, Drew R.Mater Sci Eng, 2006; A423: 269
[16] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2008; 461: 641
[17] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2009; 469: 270
[18] Pouranvari M, Ekrami A, Kokabi A H.Mater Sci Eng, 2013; A568: 76
[19] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2013; 563: 143
[20] Zheng Y R, Ruan Z C.Acta Metall Sin, 1990; 26: B119
[20] (郑运荣, 阮中慈. 金属学报, 1990; 26: B119)
[21] Neumeier S, Dinkel M, Pyczak F, G?ken M.Mater Sci Eng, 2011;A528: 815
[22] Dinkel M K, Heinz P, Pyczak F, Volek A, Ott M, Affeldt E, Singer R F.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 2008: 211
[23] Ruan Z C, Wang S C, Zheng Y R.Scr Mater, 1996; 34: 163
[24] Kvasnitskij V V, Kostin A M, Vorob'ev A N, Kulik S G, Nikolaenko V P.Avtom Svarka, 1999; 11: 22
[25] Mao W, Li X H, Zhou Y, Ye L.Trans China Weld Inst, 2011; 32(4): 91
[25] (毛唯, 李晓红, 周媛, 叶雷. 焊接学报, 2011; 32(4): 91)
[26] Cao J, Song X G, Zheng Z J, Feng J C.Trans China Weld Inst, 2011; 32(7): 13
[26] (曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13)
[27] Pollock T M.Mater Sci Eng, 1995; B32: 255
[28] Cao L M, Li X H, Chen J Y, Xue M, Zhang Y.J Mater Eng, 2011; (10): 7
[28] (曹腊梅, 李相辉, 陈晶阳, 薛明, 张勇. 材料工程, 2011; (10): 7)
[29] Chen J Y, Cao L M, Xue M, Liu L J.Rare Met, 2014; 33(2): 144
[30] Zheng Y R, Cai Y L, Ruan Z C, Ma S W.J Aeronaut Mater, 2006; 26(3): 25
[30] (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26(3): 25)
[31] Ma S W, Zheng Y R.Chin J Mater Res, 2009; 10: 149
[31] (马书伟, 郑运荣. 材料研究学报, 2009; 10: 149)
[32] Wilson B, Hickman J, Fuchs G.JOM, 2003; 55(3): 35
[33] Zhou Y, Gale W, North T.Int Mater Rev, 1995; 40: 181
[34] Steuer S, Singer R.Metall Mater Trans, 2013; 44A: 2226
[35] Li T, Wang Q Y, Wang A Q, Wen Z X, Yue Z F.Key Eng Mater, 2005; 297: 1489
[36] Cranck J.The Mathematics of Diffusion. 2nd Ed., Oxford: Clarendon Press, 1975: 71
[37] Sheng N, Liu J, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[38] Karunaratne M, Reed R.Acta Mater, 2003; 51: 2905
[39] Bergner D.Cryst Res Technol, 1972; 7: 651
[40] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.Mater Charact, 2011; 62: 545
[41] Wikstrom N, Ojo O, Chaturvedi M.Mater Sci Eng, 2006; A417: 299
[42] Lander J, Kern H, Beach A.J Appl Phys, 1952; 23: 1305
[43] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol, Great Britain: Edward Arnold Ltd, 1974: 33
[44] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 1996: 9
[45] Yang C C, Rollett A, Mullins W.Scr Mater, 2001; 44: 2735
[1] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[2] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
[3] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[4] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[5] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[6] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[7] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[8] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[9] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[10] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[11] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[12] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[14] 于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
[15] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2016, 53(5): 615-621.