Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 473-483    DOI: 10.11900/0412.1961.2015.00406
  论文 本期目录 | 过刊浏览 |
等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*
陈吉湘1,王卫国1,2(),林燕2,林琛2,王乾廷1,2,戴品强1,2
1 福州大学材料科学与工程学院, 福州 350108
2 福建工程学院材料科学与工程学院, 福州 350118
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING
Jixiang CHEN1,Weiguo WANG1,2(),Yan LIN2,Chen LIN2,Qianting WANG1,2,Pinqiang DAI1,2
1 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2 School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
引用本文:

陈吉湘,王卫国,林燕,林琛,王乾廷,戴品强. 等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*[J]. 金属学报, 2016, 52(4): 473-483.
Jixiang CHEN, Weiguo WANG, Yan LIN, Chen LIN, Qianting WANG, Pinqiang DAI. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING[J]. Acta Metall Sin, 2016, 52(4): 473-483.

全文: PDF(1849 KB)   HTML
摘要: 

选用经多向锻造和再结晶退火的晶粒组织均匀(平均晶粒尺寸为20 μm)且取向均匀的高纯Al (99.99%)为原料, 将2组平行样品分别进行等效应变ε≈2的等径角挤压(ECAP)和单向轧制(DR)变形后, 再经360 ℃再结晶退火8~90 min, 利用基于体视学原理和电子背散射衍射技术(EBSD)的五参数分析法 (FPA) 对比研究了不同变形方式对高纯Al退火再结晶晶界面取向分布的影响. 结果表明, 经变形及360 ℃退火后, 2组样品中其再结晶晶界面主要取向于低能稳定的{111}, 并主要对应于以<111>为转轴的大角度扭转晶界. ECAP与DR样品退火后的主要差异在于, 前者再结晶晶界面取向于{111}的过程较迟缓; 后者再结晶晶界面比较容易取向于{111}. 分析指出, DR变形更容易使高纯Al再结晶晶面取向于低能稳定的{111}, 更有益于晶界特征分布的优化. 这与DR变形形成的<110>//ND织构导致其再结晶退火过程中晶粒容易长大有关.

关键词 高纯Al等径角挤压单向轧制再结晶晶界面分布    
Abstract

It is quite different from those low to medium stacking fault energy face-centered cubic metals, Al and most its alloys are not applicable to twin-induced grain boundary engineering processing due to their high stacking fault energy. In order to optimize the grain boundary character distribution so as to remarkably better the properties of Al and its alloys, it is necessary at first to study the grain boundary plane distributions. In this work, two parallel high purity (99.99%) Al specimens, which were prepared by multi-directional forging followed by recrystallization annealing resulting in a homogeneous microstructure with averaged grain size around 20 μm, were separately processed by equal channel angular pressing (ECAP) and direct rolling (DR) with true strain ε≈2 followed by a recrystallization annealing at 360 ℃ for 8~90 min. Then, the grain boundary plane distributions were characterized by five-parameter analysis (FPA) based on stereology method and electron backscatter diffraction (EBSD). The results show that the grain boundary planes of the specimens as processed mainly orient on {111}, mostly corresponding to the <111> twist high angle boundaries. It is due to the energy minimum of {111}. The primary difference of grain boundary plane distributions between ECAP and DR specimens lies in the behaviors of grain boundary planes orienting onto {111}. For ECAP specimens, it is slow the grain boundary planes orienting onto {111}. However, for DR specimens, it is quite easy the grain boundary planes orienting onto {111}. Discussions pointed out, compared with ECAP deformation, DR deformation is more efficient for grain boundary plane orienting onto {111} in the subsequent recrystallization annealing and thus is more in favor of the optimization of grain boundary character distribution. It could be attributed to the development of <110>//ND textures during DR deformation which results in the fast grain growth in the subsequent recrystallization annealing.

Key wordshigh purity Al    equal channel angular pressing    direct rolling    recrystallization    grain boundary plane distribution
收稿日期: 2015-07-22     
基金资助:*国家自然科学基金项目 51171095和51271058资助
图1  等径角挤压(ECAP)和单向轧制(DR)变形前高纯Al的取向成像图(OIM)
图2  ECAP示意图
图3  ECAP高纯Al经360 ℃退火后的OIM 和KiKuchi带衬度(BC)图
图4  DR高纯Al经360 ℃退火后的OIM 和BC图
图5  ECAP和DR变形高纯Al的XRD谱
图6  ECAP和DR变形高纯Al在360 ℃退火过程中晶粒尺寸与退火时间的关系曲线
图7  ECAP和DR变形高纯Al经过360 ℃退火后的晶粒取向分布函数(ODF)截面图
图8  ECAP和DR变形高纯Al经360 ℃退火后的取向差分布
图9  ECAP和DR变形高纯Al在360 ℃退火后全谱晶界面取向分布
图10  ECAP和DR变形高纯Al经360 ℃退火后以[111]/50°为取向差的大角度晶界面分布
图11  ECAP和DR变形高纯Al经360 ℃退火后以[111]/10°为取向差的小角度晶界面分布
图12  ECAP和DR变形高纯Al在360 ℃退火后CSL晶界的分布
图13  ECAP高纯Al经360 ℃退火后CSL晶界的晶界面分布
图14  DR高纯Al经360 ℃退火后CSL晶界的晶界面分布
[1] Watanabe T.Res Mech, 1984; 11: 47
[2] Kronberg M L,Wilson F H.Trans AIME, 1949; 185: 501
[3] Aust K T, Erb U, Palumbo G.Mater Sci Eng, 1994; A176: 329
[4] Chadwick G A, Smith D A.Grain Boundary Structure and Properties. London: Academic Press, 1976: 201
[5] Randle V.Scr Mater, 2006; 54: 1011
[6] Palumbo G, Erb U.MRS Bull, 1999; 24: 27
[7] Xia S, Zhou B X, Chen J W, Wang W G.Acta Metall Sin, 2006; 42: 129
[7] (夏爽, 周邦新, 陈觉文, 王卫国. 金属学报, 2006; 42: 129)
[8] Wang W G, Zhou B X, Feng L.Acta Metall Sin, 2006; 42: 715
[8] (王卫国, 周邦新, 冯柳. 金属学报, 2006; 42: 715)
[9] Wang W G, Zhou B X, Rohrer G S, Guo H, Cai Z X.Mater Sci Eng, 2010; A527: 3695
[10] Kumar M, Schwartz A J, King W E.Acta Mater, 2002; 50: 2599
[11] Thaveeprungsriporn V, Sinsrok P, Hong-Aram D.Scr Mater, 2001; 44: 67
[12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I.Acta Mater, 2002; 50: 2331
[13] Fang X Y, Wang W G, Zhou B X.Acta Metall Sin, 2010; 46: 404
[13] (方晓英, 王卫国, 周邦新. 金属学报, 2010; 46: 404)
[14] Fang X Y, Liu Z Y, Tikhonova M, Belyakov A, Kaibyshev R, Rohrer G S, Wang W G.Acta Metall Sin, 2012; 48: 895
[14] (方晓英, 刘志勇, Tikhonova M, Belyakov A, Kaibyshev R, Rohrer G S, 王卫国. 金属学报, 2012; 48: 895)
[15] Fang X Y, Wang W G, Zhou B X.Rare Met Mater Eng, 2007; 36:1500
[15] (方晓英, 王卫国, 周邦新. 稀有金属材料与工程, 2007; 36: 1500)
[16] McNaughtan D, Worsfold M, Robinson M J.Corros Sci, 2003; 45: 2377
[17] Li X L, Chen J H, Liu C H, Feng J N, Wang S H.Acta Metall Sin, 2013; 49: 243
[17] (李祥亮, 陈江华, 刘春辉, 冯佳妮, 王时豪. 金属学报, 2013; 49: 243)
[18] Zhang H F, Zheng Z Q, Zhong S, Luo X F, Zhong J.Trans Nonferrous Met Soc China, 2012; 22: 1025
[18] (张海锋, 郑子樵, 钟申, 罗先甫, 钟警. 中国有色金属学报, 2012; 22: 1025)
[19] Saylor D M, Dasher B E, Rollett A D, Rohrer G S.Acta Mater, 2004; 52: 3649
[20] Dong L, Wang W G.Acta Phys Sin, 2013; 15: 42
[20] (董垒, 王卫国. 物理学报, 2013; 15: 42)
[21] Wang W G, Lin C, Li G H, Hua N B, Zhou B X, Fang X Y, Dai P Q, Chen W Z.Sci China, 2014; 44E: 1295
[21] (王卫国, 林琛, 李广慧, 花能斌, 周邦新, 方晓英, 戴品强, 陈文哲. 中国科学, 2014; 44E: 1295)
[22] Segal V M.Mater Sci Eng, 1995; A197: 157
[23] Beladi H, Rohrer G S.Metall Mater Trans, 2013; 44A: 115
[24] Yu Y N, Liu G Q.Stereologic: Principles and Applications of Quantitative Analysis of Tissue. Beijing: Metallurgical Industry Press, 1989: 123
[24] (余永宁, 刘国权. 体视学:组织定量分析的原理和应用. 北京: 冶金工业出版社, 1989: 123)
[25] Rohrer G S, Saylor D M, Dasher B E, Adams B L, Rollett A D, Wynblatt P.Z Metallkd, 2004; 95: 197
[26] Engler O, Huh M.Mater Sci Eng,1999; A271: 371
[27] MacKenzie J K.Biometrika, 1958; 45: 229
[28] Li J, Dillon S J, Rohrer G S.Acta Mater, 2009; 57: 4304
[29] Beladi H, Nuhfer N T, Rohrer G S.Acta Mater, 2014; 70: 281
[30] Wen Y N, Zhang J M.Solid State Commun, 2007; 144: 163
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[11] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[12] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[13] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.