Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1179-1190    DOI: 10.11900/0412.1961.2015.00380
  本期目录 | 过刊浏览 |
高温合金叶片单晶凝固技术的新发展
马德新1,2()
2 长寿命高温材料国家重点实验室, 德阳 618000
DEVELOPMENT OF SINGLE CRYSTAL SOLIDIFICA- TION TECHNOLOGY FOR PRODUCTION OF SUPERALLOY TURBINE BLADES
MA,Dexin,1,2()
1 Material R&D Center, Dongfang Turbine Co., LTD, Deyang 618000
2 State Key Laboratory of Long-Life High Temperature Materials, Deyang 618000
引用本文:

马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10): 1179-1190.
, , . DEVELOPMENT OF SINGLE CRYSTAL SOLIDIFICA- TION TECHNOLOGY FOR PRODUCTION OF SUPERALLOY TURBINE BLADES[J]. Acta Metall Sin, 2015, 51(10): 1179-1190.

全文: PDF(7779 KB)   HTML
摘要: 

分析了高温合金叶片复杂部位的凝固过程, 提出了单晶组织的三维生长机制和精确制导的新理念. 通过展示一系列的新发明, 如导热体引晶技术、平行式加热和冷却定向凝固设备、对叶片不同部位分别进行定点冷却和定点加热的复合控制引晶技术、薄壳降升法制造单晶叶片技术等, 显示了高温合金叶片单晶凝固技术发展的新思路和新举措. 这些新理念的提出和新发明的实施, 将有助于高温合金单晶叶片这种高精产品的制造方式实现从粗放式到精细式的根本转变.

关键词 高温合金定向凝固单晶涡轮叶片    
Abstract

Based on the analysis of solidification processing in complex turbine blades, a new idea of 3-dimensional and precise control of single crystal (SC) growth was proposed. A series of new techniques were presented,exhibiting the new development in the production of SC blades of superalloys. The heat conductor (HC)technique was developed to minimize the hot barrier effect which hindered the lateral SC growth. This method promotes the successful transition of SC growth from the blade body into the platform extremity prior to the nucleation of stray grains. To achieve symmetric thermal conditions for solidifying the SC blades, the PHC (parallel heating and cooling) system has been employed. With this technique, both sides of a shell mold can be both symmetrically heated in the heating zone as well as cooled in the cooling zone. The negative shadow effect in the current Bridgman process and the related defects are hence removed. With the H&D (dipping and heaving) technique using thin shell, the main problems of the Bridgman process, such as the ineffective radiative heat exchange and the large thermal resistance in thick ceramic molds, can be effectively resolved. This technique enables the establishment of a high temperature gradient at solidification front. By combining targeted cooling and heating technique, a 3-dimensionalcontrol of SC growth in large components can be achieved.

Key wordssuperalloy    directional solidification    single crystal    turbine blade
    
图1  涡轮叶片3种典型晶粒组织的形成原理
图2  典型叶片形状和缘板过冷顺序(C-B-A)及单晶凝固路径(A-B-C)示意图
图3  高温合金CMSX-6单晶叶片缘板横截面的枝晶组织
图4  一种低过冷能力合金的叶片缘板的宏观组织
图5  引晶条技术示意图和应用时引起的叶片中小角度晶界
图6  导热体技术原理、应用实例及效果对比
图7  用于重型燃机的空心单晶叶片铸件
图8  传统桶式Bridgman炉的俯视和侧视示意图
图9  新型平行式定向凝固炉的俯视和侧视示意图
图10  结合定点冷却和定点加热的复合控制引晶技术示意图
图11  薄壳降升法制取单晶叶片示意图
图12  空气中用薄壳降升法制取Al单晶叶片的实验、带残壳的叶片和腐蚀后的叶片单晶组织
图13  薄壳降升法与复合控制法结合示意图
图14  真空中用薄壳降升法制取高温合金单晶叶片的实验装置图、制备的CMSX-4单晶小叶片和单晶叶片横截面组织
[1] Versnyder F I, Shank M E. Mater Sci Eng, 1970; A6: 213
[2] Ericson J S, Owczarski W A, Curran P M. Met Prog, 1971; 109(3): 58
[3] Liu L. Foundry, 2012; 61: 1273 (刘 林. 铸造, 2012; 61: 1273)
[4] Fitzgerald T J, Singer R F, Krug P. Eur Pat, EP0775030, 1997
[5] Elliott A F, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221
[6] Ma D, Wu Q, Bührig-Polaczek A. Adv Mater Res, 2011; 278: 417
[7] Meyerter V M, Dedecke D, Paul U, Sahm P R. In: Kissinger R D, Deye D J, Anton D L, Getel A D, Nathal M V, Pollock T M eds., Superalloys 1996, Warrendale: TMS, 1996: 471
[8] Napolitano R E, Schaefer R J. J Mater Sci, 2000; 35: 1641
[9] Napolitano R E, Black D R. J Mater Sci, 2004; 39: 7009
[10] Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[11] D'Souza N, Newell M, Devendra K, Jennings P A, Ardakani M G, Shollock B A. Mater Sci Eng, 2005; A413-414: 567
[12] Giamei A F, Kear B H. Metall Trans, 1970; 1: 2185
[13] Copley S M, Giamei A F, Johnson S M, Hornbecker M F. Metall Trans, 1970; 1: 2193
[14] Ma D. Metall Mater Trans, 2004; 35B: 735
[15] Ma D. J Cryst Growth, 2004; 260: 580
[16] Ma D, Bührig-Polaczek A. German Patent, DE1020007014744, 2008
[17] Ma D, Sahm P R, Bührig-Polaczek A. Giesserei, 2009; 96: 124
[18] Ma D, Bührig-Polaczek A. Int J Mater Res, 2009; 100: 1145
[19] Ma D, Bührig-Polaczek A. Metall Mater Trans, 2009; 40B: 738
[20] Ma D, Bührig-Polaczek A. Int Foundry Res, 2010; 62: 32
[21] Kats L, Konter M. R?sler J, Lubenets V P. German Pat, DE19539770 A1, 1995
[22] Kats L, Konter M. R?sler J, Lubenets V P. US Pat, 5.921.310, 1995
[23] Konter M, Kats E, Hofmann N. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 189
[24] Ma D, Wu Q, Bührig-Polaczek A. Mater Sci Eng, 2011; 27: 012037
[25] Ma D, Wu Q, Bührig-Polaczek A. Metall Mater Trans, 2012; 43B: 344
[26] Ma D, Bührig-Polaczek A. Metall Mater Trans, 2014; 45A: 1435
[27] Ma D, Lu H, Bührig-Polaczek A. Mater Sci Eng, 2011; 27: 012036
[28] Wang F, Ma D, Zhang J, Liu L, Hong J, Bogner S, Bührig-Polaczek A. J Cryst Growth, 2014; 389: 47
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.