Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 437-444    DOI: 10.11900/0412.1961.2015.00374
  论文 本期目录 | 过刊浏览 |
定向凝固U720Li合金的高温塑性变形行为*
高博1,王磊1(),梁涛沙1,刘杨1,宋秀1,曲敬龙2
1 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
2 钢铁研究总院高温材料研究所, 北京 100081
PLASTIC DEFORMATION BEHAVIOR OF DIRECTION-ALLY SOLIDIFIED U720Li ALLOY AT ELEVATEDTEMPERATURE
Bo GAO1,Lei WANG1(),Taosha LIANG1,Yang LIU1,Xiu SONG1,Jinglong QU2
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(1411 KB)   HTML
摘要: 

采用热模拟实验研究了定向凝固与等轴晶U720Li合金的高温塑性变形行为, 利用OM, SEM和EBSD分析了不同变形条件下合金的组织特征及动态再结晶机制. 结果表明, 定向凝固与等轴晶合金的变形抗力均随变形温度升高而降低. 定向凝固U720Li合金沿垂直柱状晶方向变形时变形抗力较低, 枝晶间协调变形能力良好, 未出现裂纹. 与等轴晶合金相比, 相同变形条件下定向凝固合金的动态再结晶组织均匀; 高温塑性变形过程中, 定向凝固合金的动态再结晶主要以晶界弓弯和位错塞积方式形核. 定向凝固U720Li合金的变形激活能为766 kJ/mol, 比等轴晶合金降低了38.6%, 定向凝固合金呈现出更好的热加工特性.

关键词 定向凝固U720Li合金热加工塑性动态再结晶    
Abstract

U720Li, a kind of precipitation type nickel-based superalloy, shows excellent mechanical properties at elevated temperature, which is also known as the difficult-to-deform alloy because of the high-alloying. To solve its deformation problem, new methods would be developed to enlarge the temperature deforming window and improve its plasticity. The hot compression deformation behaviors of directionally solidified and equiaxed grain U720Li alloys were studied by the MMS-300 testing system, as well as the dynamic recrystallization nucleation and growth mechanisms during the hot deformation were discussed. The microstructural characteristics of the alloy under different deformation conditions were examined using OM, SEM and EBSD. The results show that the deforming resistances of both directionally solidified and equiaxed grain U720Li alloys decrease with the increasing of deforming temperature. When the angle θ between the compression deforming direction and dendrite growth direction is 90°, the deforming resistance of directionally solidified U720Li alloy would be lower. With this direction, the coordination deformation between the dendrites becomes better and no crack can be found after deformation, which indicates that the deforming ability is best along θ=90° and it can be considered as the optimal deforming direction for directionally solidified U720Li alloy. Compared with equiaxed grain alloy, directionally solidified U720Li alloy performs higher deformation ability and more homogenous microstructures. During the deformation of directionally solidified U720Li alloy, bulging nucleation of grain boundary migration and dislocation pile-up induced nucleation are found as the main mechanism for the nucleation of dynamic recrystallization. In addition, the deformation activation energy of directionally solidified U720Li alloy is 766 kJ/mol, which is 482 kJ/mol lower than that of equiaxed grain alloy, indicating the directionally solidified U720Li alloy exhibits better hot-working plasticity.

Key wordsdirectional solidification    U720Li    hot-working plasticity    dynamic recrystallization
收稿日期: 2015-07-10      出版日期: 2016-04-13
基金资助:* 国家自然科学基金项目51171039和51371044以及国家高技术研究发展计划项目2012AA03A513资助

引用本文:

高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
Bo GAO,Lei WANG,Taosha LIANG,Yang LIU,Xiu SONG,Jinglong QU. PLASTIC DEFORMATION BEHAVIOR OF DIRECTION-ALLY SOLIDIFIED U720Li ALLOY AT ELEVATEDTEMPERATURE. Acta Metall, 2016, 52(4): 437-444.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00374      或      http://www.ams.org.cn/CN/Y2016/V52/I4/437

图1  定向凝固和等轴晶U720Li合金铸态OM像
图2  不同变形条件下定向凝固U720Li合金修正后的真应力-真应变曲线
图3  不同温度下定向凝固U720Li合金热压缩过程中的σs-θ关系
图4  不同θ定向凝固U720Li合金热压缩后的OM像
图5  不同变形条件下U720Li合金热压缩峰值应力-温度关系
图6  在1125 ℃和1 s-1的条件下热压缩30%后U720Li合金的OM像
Strain rate ε˙ / s-1 1025 ℃ 1050 ℃ 1075 ℃ 1100 ℃ 1125 ℃ 1150 ℃
0.01 66.38 65.03 63.74* 62.50* 61.30* 60.14*
0.1 68.68 67.34* 66.05* 64.80* 63.60* 62.44*
1 70.98 69.64 68.35* 67.10* 65.90* 64.75*
表1  不同温度和应变速率下热压缩30%后定向凝固U720Li合金的lnZ值
图7  不同变形条件下定向凝固U720Li合金热压缩30%之后的OM像
图8  定向凝固U720Li合金在1075 ℃和0.1 s-1的条件下热压缩30%后的OM像
图9  定向凝固U720Li合金在1125 ℃, 0.1 s-1条件下热压缩30%后的SEM像
图10  不同应变速率下定向凝固U720Li合金在1150 ℃热压缩30%后纵截面的EBSD分析
[1] Guo J T.Materials Science and Engineering for Superalloys. Vol.1, Beijing: Science Press, 2008: 3
[1] (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 3)
[2] Huang Q Y, Li H K.Superalloy. Beijing: Metallurgy Industry Press, 2000: 1
[2] (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 1)
[3] Sharqhi-Moshtaqhin R, Asqari S.J Mater Process Technol, 2004; 147: 343
[4] Guo J T.Materials Science and Engineering for Superalloys. Vol.2, Beijing: Science Press, 2008: 127
[4] (郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 127)
[5] Jackson M P, Reed R C.Mater Sci Eng, 1998; A259: 85
[6] Pang H T, Reed P A S.Int J Fatigue, 2008; 30: 2009
[7] Qu J L, Du J H, Bi Z N, Wang M Q, Zhang J, Wu G L.J Iron Steel Res, 2011; 23(suppl2): 247
[7] (曲敬龙, 杜金辉, 毕中南, 王民庆, 张继, 吴桂林. 钢铁研究学报, 2011; 23(增刊2): 247)
[8] The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Vol.2, 2nd Ed., Beijing: Standards Press of China, 2002: 271
[8] (《中国航空材料手册》编委会. 中国航空材料手册. 第2卷, 第二版, 北京: 中国标准出版社, 2002: 271)
[9] Wang L A.Manufacturing Engineering for Hard Wrought Forgings. Beijing: National Defend Industry Press, 2005: 98
[9] (王乐安. 难变形合金锻件生产技术. 北京: 国防工业出版社, 2005: 98)
[10] Monajati H, Jahazi M, Yue S, Taheri A K.Metall Mater Trans, 2005; 36A: 895
[11] Guo X P, Gao L M, Guan P, Kusabiraki K, Fu H Z. Mater Sci Forum, 2007; 539-543: 3690
[12] Tao C H, Zhang W F, Li Y J, Shi H J.Failure Analysis Prevention, 2006; 1(4): 1
[12] (陶春虎, 张卫方, 李运菊, 施惠基. 失效分析与预防, 2006; 1(4): 1)
[13] Tao C H, Zhang W F, Shi H J, Zhang Z L.Recrystallization of Directionally Solidified Superalloy. Beijing: National Defend Industry Press, 2007: 1
[13] (陶春虎, 张卫方, 施惠基, 张宗林. 定性凝固高温合金的再结晶. 北京: 国防工业出版社, 2007: 1)
[14] Zhao X B, Liu L, Yu Z H, Wang W G, Fu H Z.Mater Charact, 2010; 61: 7
[15] Warnken N, Ma D, Mathes M, Steinbach I. Mater Sci Eng, 2005; A413-414: 267
[16] Li X C.Met Sci Technol, 1986; 5(1): 99
[16] (李秀臣. 金属科学与工艺, 1986; 5(1): 99)
[17] Xia W J.PhD Dissertation, Hunan University, Changsha, 2010
[17] (夏伟军. 湖南大学博士学位论文, 长沙, 2010)
[18] Ebrahimi R, Najafizadeh A.J Mater Processing Technol, 2004; 152: 136
[19] Guo J H, Zhao S D, Murakami R, Ding R X, Fan S Q.J Alloys Compd, 2013; 566: 62
[20] Wu Z G, Li D F.Chin J Nonferrous Met, 2010; 20: 1321
[20] (吾志刚, 李德富. 中国有色金属学报, 2010; 20: 1321)
[21] Yu J W, Liu X F, Xie J X.Acta Metall Sin, 2011; 47: 482
[21] (余均武, 刘雪峰, 谢建新. 金属学报, 2011; 47: 482)
[22] Ouyang D L, Lu S Q, Cui X, Wu C, Dong X J.Trans Mater Heat Treatment, 2009; 30: 116
[22] (欧阳德来, 鲁世强, 崔霞, 吴超, 董显娟. 材料热处理学报, 2009; 30: 116)
[23] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F.Mater Sci Eng, 2012; A532: 487
[24] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. Oxford: Pergamon, 2004: 285
[25] Wang Y, Shao W Z, Zhen L, Zhang X M.Mater Sci Eng, 2008; A486: 321
[1] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[2] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[3] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[4] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[5] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[6] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[7] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[8] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[9] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[10] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[11] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[12] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[13] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[14] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[15] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.