Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1253-1260    DOI: 10.11900/0412.1961.2015.00369
  本期目录 | 过刊浏览 |
DD9单晶高温合金拉伸性能各向异性
王效光,李嘉荣(),喻健,刘世忠,史振学,岳晓岱
TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9
Xiaoguang WANG,Jiarong LI(),Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
Xiaoguang WANG, Jiarong LI, Jian YU, Shizhong LIU, Zhenxue SHI, Xiaodai YUE. TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9[J]. Acta Metall Sin, 2015, 51(10): 1253-1260.

全文: PDF(8239 KB)   HTML
摘要: 

采用OM, SEM和TEM研究了[001], [011]和[111]取向第三代单晶高温合金DD9组织, 在拉伸试验机上测试了3种取向760和1100 ℃下的拉伸性能. 结果表明, 在垂直于晶体生长方向的截面上, [001], [011]和[111]取向DD9合金铸态枝晶形貌、热处理态γ’相形状不同; 随着温度的升高, 合金的抗拉强度与屈服强度降低, 各向异性减弱; 除1100 ℃下[001]取向屈服强度略低于[011]取向, [001]取向DD9合金抗拉强度与屈服强度分别高于[011]和[111]取向合金; [001], [011]和[111]取向DD9合金760 ℃下拉伸断口呈类解理特征, 1100 ℃下断口为韧窝断裂特征; 760 ℃下DD9拉伸试样在基体通道内含有浓密的位错, [001]取向在γ’相内出现了层错, 1100 ℃下[001]与[111]取向在基体通道内和γ’相内累积了大量浓密的位错网, [011]取向出现了大量的形变孪晶带.

关键词 单晶高温合金DD9拉伸性能各向异性断口位错    
Abstract

The Ni-based single crystal superalloys are widely used in key hot section parts of advanced aero engine due to the superior high temperature mechanical properties. Multi-axial stresses resulting from complex temperature and stress state happen frequently in blades during service, thus the mechanical properties of three orientations need to be studied. However, most of these works are conducted in the first and second single crystal superalloys and there is rare report concerning the third single superalloys. Therefore, in this work the microstructures and tensile properties of the third generation single crystal superalloy DD9 with [001], [011] and [111] orientations were investigated by OM, SEM, TEM and tensile testing machine at 760 and 1100 ℃. The results show that as-cast dendritic structures and heat treated γ’ of DD9 alloy with three orientations are different on the section perpendicular to the crystal growth direction. With rising of temperature, the ultimate tensile strength and yield strength decrease and tensile anisotropy drops obviously. The ultimate tensile strength and yield strength of DD9 alloy with [001] orientation are higher than those with [011] and [111] orientation except that the yield strength with [001] orientation is slightly lower than that with [011] orientation. With temperature increasing, the fracture characteristic transforms from quasi-cleavage at 760 ℃ to dimple at 1100 ℃. At 760 ℃, very high density dislocations appear in the matrix channels with [001], [011] and [111] orientations, but some stacking faults are present only in γ’ particles with [001] orientation. At 1100 ℃, the high density dislocation networks resulted in the matrix channels and particles of the alloy with [001] and [111] orientations, while a large number of deformation twins are found in samples with [011] orientation.

Key wordssingle crystal superalloy DD9    tensile property    anisotropy    fracture surface    dislocation
    
图1  [001], [011]和[111]取向DD9合金铸态枝晶组织
图2  [001], [011]和[111]取向DD9合金热处理态组织
图3  [001], [011]和[111]取向DD9合金在不同温度下的典型应力-应变曲线
图4  [001], [011]和[111]取向DD9合金在760和1100 ℃的拉伸性能
图5  [001], [011]和[111]取向DD9合金760 ℃拉伸断口及纵向形貌
图6  [001], [011]和[111]取向DD9合金1100 ℃拉伸断口及纵向形貌
图7  [001], [011]和[111]取向DD9合金拉伸断口附近位错的TEM像
图8  [001], [011]和[111]取向DD9合金γ’相形貌示意图
[1] Sato A, Harada H. Scr Mater, 2006; 54: 1679
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania, PA: TMS, 1992: 567
[4] Ross E W, O'hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 19
[5] Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 27
[6] Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 3
[7] Shah D M, Duhl D N. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 105
[8] Dalal R P, Thomasc R, Dardi L E. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 185
[9] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[10] MacKay R A, Maier R D. Metall Mater Trans, 1982; 13A: 1747
[11] Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6)
[12] Li J R, Liu S Z, Shi Z X, Luo Y S, Wang X G. J Iron Steel Res, 2011; 23(suppl 2): 337 (李嘉荣, 刘世忠, 史振学, 骆宇时, 王效光. 钢铁研究学报, 2011; 23(增刊2): 337)
[13] Miner R V, Voigt R C, Gayda J, Gabb T P. Metall Mater Trans, 1986; 17A: 491
[14] Wang L N, Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2009; A505: 144
[15] Ardakani M G, McLean M, Shollock B A. Acta Mater, 1999; 47: 2593
[16] Milligan W W, Antolovich S D. Metall Mater Trans, 1991; 22A: 2309
[17] Shi Z X, Li J R, Liu S Z, Zhao J Q. J Iron Steel Res Int, 2011; 18: 66
[18] Kakehi K. Metall Mater Trans, 1999; 30A: 1249
[19] Hu H Q. Fundamentals of Metal Solidification. 2nd Ed.,Beijing: China Machine Press, 2000: 142 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 142)
[20] Zhang L F, Yan P, Zhao J C, Zeng Q, Han F K. J Mater Eng, 2011; (6): 67 (张龙飞, 燕 平, 赵京晨, 曾 强, 韩凤奎. 材料工程, 2011; (6): 67)
[21] Feng D. Physics of Metals. Beijing: Science Press, 1999: 326 (冯 端. 金属物理学. 北京: 科学出版社, 1999: 326)
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[3] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[6] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[10] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[11] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[12] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[14] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[15] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.