Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1253-1260    DOI: 10.11900/0412.1961.2015.00369
  本期目录 | 过刊浏览 | 高级检索 |
DD9单晶高温合金拉伸性能各向异性
王效光,李嘉荣(),喻健,刘世忠,史振学,岳晓岱
TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9
Xiaoguang WANG,Jiarong LI(),Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
全文: PDF(8239 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用OM, SEM和TEM研究了[001], [011]和[111]取向第三代单晶高温合金DD9组织, 在拉伸试验机上测试了3种取向760和1100 ℃下的拉伸性能. 结果表明, 在垂直于晶体生长方向的截面上, [001], [011]和[111]取向DD9合金铸态枝晶形貌、热处理态γ’相形状不同; 随着温度的升高, 合金的抗拉强度与屈服强度降低, 各向异性减弱; 除1100 ℃下[001]取向屈服强度略低于[011]取向, [001]取向DD9合金抗拉强度与屈服强度分别高于[011]和[111]取向合金; [001], [011]和[111]取向DD9合金760 ℃下拉伸断口呈类解理特征, 1100 ℃下断口为韧窝断裂特征; 760 ℃下DD9拉伸试样在基体通道内含有浓密的位错, [001]取向在γ’相内出现了层错, 1100 ℃下[001]与[111]取向在基体通道内和γ’相内累积了大量浓密的位错网, [011]取向出现了大量的形变孪晶带.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 单晶高温合金DD9拉伸性能各向异性断口位错    
Abstract

The Ni-based single crystal superalloys are widely used in key hot section parts of advanced aero engine due to the superior high temperature mechanical properties. Multi-axial stresses resulting from complex temperature and stress state happen frequently in blades during service, thus the mechanical properties of three orientations need to be studied. However, most of these works are conducted in the first and second single crystal superalloys and there is rare report concerning the third single superalloys. Therefore, in this work the microstructures and tensile properties of the third generation single crystal superalloy DD9 with [001], [011] and [111] orientations were investigated by OM, SEM, TEM and tensile testing machine at 760 and 1100 ℃. The results show that as-cast dendritic structures and heat treated γ’ of DD9 alloy with three orientations are different on the section perpendicular to the crystal growth direction. With rising of temperature, the ultimate tensile strength and yield strength decrease and tensile anisotropy drops obviously. The ultimate tensile strength and yield strength of DD9 alloy with [001] orientation are higher than those with [011] and [111] orientation except that the yield strength with [001] orientation is slightly lower than that with [011] orientation. With temperature increasing, the fracture characteristic transforms from quasi-cleavage at 760 ℃ to dimple at 1100 ℃. At 760 ℃, very high density dislocations appear in the matrix channels with [001], [011] and [111] orientations, but some stacking faults are present only in γ’ particles with [001] orientation. At 1100 ℃, the high density dislocation networks resulted in the matrix channels and particles of the alloy with [001] and [111] orientations, while a large number of deformation twins are found in samples with [011] orientation.

Key wordssingle crystal superalloy DD9    tensile property    anisotropy    fracture surface    dislocation
     出版日期: 2015-08-26
引用本文:   
王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
Xiaoguang WANG,Jiarong LI,Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE. TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9. Acta Metall, 2015, 51(10): 1253-1260.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00369      或      http://www.ams.org.cn/CN/Y2015/V51/I10/1253
Fig.1  [001], [011]和[111]取向DD9合金铸态枝晶组织
Fig.2  [001], [011]和[111]取向DD9合金热处理态组织
Fig.3  [001], [011]和[111]取向DD9合金在不同温度下的典型应力-应变曲线
Fig.4  [001], [011]和[111]取向DD9合金在760和1100 ℃的拉伸性能
Fig.5  [001], [011]和[111]取向DD9合金760 ℃拉伸断口及纵向形貌
Fig.6  [001], [011]和[111]取向DD9合金1100 ℃拉伸断口及纵向形貌
Fig.7  [001], [011]和[111]取向DD9合金拉伸断口附近位错的TEM像
Fig.8  [001], [011]和[111]取向DD9合金γ’相形貌示意图
[1] Sato A, Harada H. Scr Mater, 2006; 54: 1679
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania, PA: TMS, 1992: 567
[4] Ross E W, O'hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 19
[5] Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 27
[6] Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 3
[7] Shah D M, Duhl D N. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 105
[8] Dalal R P, Thomasc R, Dardi L E. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 185
[9] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[10] MacKay R A, Maier R D. Metall Mater Trans, 1982; 13A: 1747
[11] Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6)
[12] Li J R, Liu S Z, Shi Z X, Luo Y S, Wang X G. J Iron Steel Res, 2011; 23(suppl 2): 337 (李嘉荣, 刘世忠, 史振学, 骆宇时, 王效光. 钢铁研究学报, 2011; 23(增刊2): 337)
[13] Miner R V, Voigt R C, Gayda J, Gabb T P. Metall Mater Trans, 1986; 17A: 491
[14] Wang L N, Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2009; A505: 144
[15] Ardakani M G, McLean M, Shollock B A. Acta Mater, 1999; 47: 2593
[16] Milligan W W, Antolovich S D. Metall Mater Trans, 1991; 22A: 2309
[17] Shi Z X, Li J R, Liu S Z, Zhao J Q. J Iron Steel Res Int, 2011; 18: 66
[18] Kakehi K. Metall Mater Trans, 1999; 30A: 1249
[19] Hu H Q. Fundamentals of Metal Solidification. 2nd Ed.,Beijing: China Machine Press, 2000: 142 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 142)
[20] Zhang L F, Yan P, Zhao J C, Zeng Q, Han F K. J Mater Eng, 2011; (6): 67 (张龙飞, 燕 平, 赵京晨, 曾 强, 韩凤奎. 材料工程, 2011; (6): 67)
[21] Feng D. Physics of Metals. Beijing: Science Press, 1999: 326 (冯 端. 金属物理学. 北京: 科学出版社, 1999: 326)
[1] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[2] 杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
[3] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[4] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[5] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[6] 宋衎,喻凯,林鑫,陈静,杨海欧,黄卫东. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能*[J]. 金属学报, 2015, 51(8): 935-942.
[7] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[8] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[9] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[10] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[11] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[12] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[13] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[14] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[15] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed