Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 378-384    DOI: 10.11900/0412.1961.2015.00367
  论文 本期目录 | 过刊浏览 |
In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*
宋永锋1,李雄兵1,2(),吴海平1,司家勇2,韩晓芹1
1 中南大学交通运输工程学院, 长沙 410075
2 中南大学粉末冶金国家重点实验室, 长沙 410083
EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD
Yongfeng SONG1,Xiongbing LI1,2(),Haiping WU1,Jiayong SI2,Xiaoqin HAN1
1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. Acta Metall Sin, 2016, 52(3): 378-384.

全文: PDF(3253 KB)   HTML
摘要: 

制备晶粒尺寸不同的In718合金试样, 采用经验模态分解(EMD)研究超声背散射信号的时频域特征, 分析晶粒尺寸对不同频段固有模态函数(IMF)的影响, 并探求各IMF信号的功率与晶粒尺寸之间的相关性. 结果表明, 原始背散射信号和IMF1信号的频带宽受晶粒尺寸变化影响均不显著; IMF2信号频域分布较为集中, 峰值频率的幅值随晶粒的增大而增大, 其功率与晶粒尺寸相关系数达0.995, 显著高于其它模态, EMD过程实质上滤除了与晶粒尺寸无关的成分. 以充分反映晶粒散射强度的IMF2成分作为晶粒尺寸评价的特征信号, 建立面向In718晶粒尺寸的超声背散射EMD评价模型. 晶粒尺寸实测结果显示, 本方法的灵敏度是传统背散射法的3.7倍; 对2个验证试样的评价误差分别为-3.72%和2.87%, 精度显著高于声速法; 与衰减法相比, 本方法无需厚度信息, 评价结果不受测厚误差的影响; 此外, 相比于金相法具有效率高及无需破坏待测件的优势.

关键词 In718高温合金晶粒尺寸超声无损评价背散射信号经验模态分解固有模态函数    
Abstract

Superalloy In718 enjoys wide application in such crucial parts as turbine engine disks due to high strength, great toughness and corrosion resistance in different temperature environment. Since the mechanical properties of superalloy In718 are greatly influenced by the grain size, a nondestructive detection method is studied in order to determine the grain size quickly and effectively. In this work, superalloy In718 samples of different grain sizes were produced and the empirical mode decomposition (EMD) method was employed to find the characteristics of the time-frequency domain of the ultrasonic backscattering signals. Then the effects of the grain size over the intrinsic mode function (IMF) of different frequency bands were analyzed to seek the relations between the grain size and the power of the IMF signals. The original backscattering signals and IMF1 (the first IMF) signals barely respond to the change of the grain size because of their wide frequency bandwidths; the distribution of the frequency domain of the IMF2 signals is centralized and the amplitude of the peak frequency increases with the grain size, and the correlation coefficient between the power and the grain size is 0.995, much higher than that of other modes. This method eliminates the components irrelative to the grain size and takes the IMF2 components which fully reflect the intensity of the grain scattering as the characteristic signals of the grain size evaluation to build an ultrasonic backscattering EMD model evaluating the grain size of superalloy In718. The actual measurement results of the grain size show that the sensitivity of this method is 3.7 times over the traditional backscattering method; the evaluation errors over the two verification test samples are -3.72% and 2.87%, apparently more accurate than the ultrasonic velocity method; compared with the attenuation method, this method requires no information of the thickness so that the evaluation results are independent of the thickness measuring error; compared with the metallographic method, this method is more efficient and requires no damage on the components to be evaluated.

Key wordssuperalloy In718    grain size    ultrasonic nondestructive evaluation    backscattering signal    empirical mode decomposition    intrinsic mode function
收稿日期: 2015-07-10     
基金资助:* 国家自然科学基金项目61271356和51575541, 国家高技术研究发展计划项目2012AA03A514, 中央高校基本科研业务费项目2014zzts203, 以及中南大学粉末冶金国家重点实验室基金项目2014M562126资助
图1  超声A波信号采集示意图
图2  试样No.1~No.5的OM像
图3  试样No.1, No.3和No.5的超声背散射信号
图4  试样No.1, No.3和No.5的背散射信号频谱图
图5  试样No.1背散射信号经验模态分解结果
图6  晶粒尺寸与各阶模态函数平均功率的关系
图7  试样No.1, No.3和No.5的模态函数频谱图
图8  试样IMF2信号频谱对比
表1  4 种模型的测试结果对比
图9  不同的晶粒尺寸评价模型
图10  试样T1 和T2 的OM像
[1] Shi C X, Zhong Z Y.Acta Metall Sin, 2010; 11: 1281
[1] (师昌绪, 仲增墉. 金属学报, 2010; 11: 1281)
[2] Zhuang J Y, Du J H, Deng Q, Qu J L, lv X D. The Wrought Superalloys GH4169. Beijing: Metallurgy Industry Press, 2006: 96
[2] (庄景云, 杜金辉, 邓群, 曲敬龙, 吕旭东. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 96)
[3] Liu L, Huang T W, Xiong Y H, Yang A M, Zhao Z L, Zhang R, Li J S.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004 Tenth International Symposium. Iowa: AIP Publishing, 2004: 493
[4] Chen L Q, Sui F L, Liu X H.Acta Metall Sin, 2009; 10: 1242
[4] (陈礼清, 隋凤利, 刘相华. 金属学报, 2009; 10: 1242)
[5] Badidi B A, Lebaili S, Benchaala A.NDT&E Int, 2003; 36: 1
[6] Palanichamy P, Joseph A, Jayakumar T, Raj B.NDT&E Int, 1995; 28: 179
[7] Chen Y, Luo Z B, Zhou Q, Zou L J, Lin L.Ultrasonics, 2015; 59: 31
[8] Lynnworth L C.Ultrasonic Measurements for Process Control: Theory, Techniques, Applications. San Diego: Academic Press, 2013: 75
[9] ünal R, Sarpün I H, Yal?m H A, Erol A, ?zdemir T, Tuncel S. Mater Charact, 2006; 56: 241
[10] Aghaie-Khafri M, Honarvar F, Zanganeh S.J Nondestruct Eval, 2012; 31: 191
[11] Li X B, Song Y F, Ni P J, Liu F.Acta Metall Sin, 2015; 51: 121
[11] (李雄兵, 宋永锋, 倪培君, 刘锋. 金属学报, 2015; 51: 121)
[12] Fay B, Brendel K, Ludwig G.Ultrasound Med Biol, 1976; 2(3): 195
[13] Margetan F J.In: Thompson D O, Chimenti D E eds., Review of Progress in Quantitative Nondestructive Evaluation. Iowa: AIP Publishing, 2012: 1430
[14] Panetta P D, Bland L G, Tracy M, Hassan W.In: The Minerals, Metals & Materials Society (TMS) ed., TMS 2014 Annual Meeting Supplemental Proceedings. Hoboken: John Wiley & Sons Inc, 2014: 721
[15] Thompson R B, Gray T A. J Acoust Soc Am, 1983; 74: 1279
[16] Margetan F, Nieters E, Haldipur P, Chiou T.Fundamental Studies of Nickel Billet Materials-Engine Titanium Consortium Phase Ⅱ. Atlantic City: Federal Aviation Administration William J, Hughes Technical Center Press, 2005: 16
[17] Ma S W, Yuan K.J Shanghai Univ (Nat Sci Ed), 2010; 16: 125
[17] (马世伟, 袁康. 上海大学学报(自然科学版), 2010; 16: 125)
[18] Huang N E, Shen S S.Hilbert-Huang Transform and Its Applications. Washington: World Scientific, 2005: 1
[19] Qi H, Azer M, Ritter A.Metall Mater Trans, 2009; 40A: 2410
[20] Du H, Turner J A.Ultrasonics, 2014; 54: 882
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[6] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[8] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[9] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[12] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[13] 赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] 李雄兵, 宋永锋, 倪培君, 刘锋. 面向晶粒尺寸的超声多尺度衰减评价方法[J]. 金属学报, 2015, 51(1): 121-128.
[15] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.