Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1261-1272    DOI: 10.11900/0412.1961.2015.00363
  本期目录 | 过刊浏览 | 高级检索 |
Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响
赵云松1,2,张剑2,骆宇时2,唐定中2,冯强1,3()
2 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
3 高端金属材料特种熔炼工艺与制备北京市重点实验室, 北京 100083
EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11
Yunsong ZHAO1,2,Jian ZHANG2,Yushi LUO2,Dingzhong TANG2,Qiang FENG1,3()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
3 Beijing Key Laboratory of Special Melting and Reparation of High-end Metal Materials, Beijing 100083
下载:  HTML  PDF(10277KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过对4种不同Hf含量(0~0.80%, 质量分数, 下同)的第二代镍基单晶高温合金DD11铸态及热处理态组织定量表征与1100 ℃, 140 MPa持久性能测试, 研究了Hf对相转变温度、(γ+γ’)共晶组织、碳化物、微孔、凝固偏析、合金元素成分分配比及持久性能的影响. 结果表明, 添加Hf显著降低合金的固/液相线, 降低微孔含量, 提高铸态共晶组织体积分数、MC型碳化物含量以及凝固偏析程度. 合金热处理后, 随着Hf含量提高, 固溶微孔含量显著降低、残余共晶和碳化物含量显著增加. 添加Hf通过提高Re, Mo和Cr的成分分配比, 增加γ/γ’错配度, 减小γ/γ’界面位错间距, 促进Re, Mo和Cr向γ相中偏聚, 提高固溶强化效果, 减小微孔含量等方式, 显著提高DD11合金持久性能. 但当Hf含量达到0.80%时, 热处理后的残余共晶、碳化物含量较高, 导致合金持久性能明显降低.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  单晶高温合金  Hf  成分分配比  显微组织  持久性能    
Abstract: 

The effect of Hf on the as-cast, heat-treated microstructures and stress rupture properties under 1100 ℃ and 140 MPa was investigated in four second generation Ni-based single crystal superalloys DD11 with various levels of Hf (0~0.80%, mass fraction) additions. The results indicate that increasing Hf addition resulted in decreasing the solidus and liquidus temperatures, while it enhanced the volume fraction of (γ+γ’) eutectic and MC carbide as well as solidification segregation. The number of micropores reduced significantly and the volume fraction of residual (γ+γ’) eutectic and MC carbide increased after heat treatment as Hf content increased. Compared to the Hf-free alloy, the stress rupture life was observed to increase in the alloys with 0.40%Hf, but dropped in the alloy containing 0.80%Hf. Hf addition increased the elemental partitioning ratio of Re, Mo, Cr, resulting in increasing γ/γ’ misfit and decreasing the spacing of γ/γ’ interfacial dislocation networks. The solution strengthing effect was also improved with the enhanced concentration of Re, Mo and Cr in γ phase in Hf-modified alloys. However, when the Hf content was 0.80% in DD11 alloy, the stress rupture properties was decreased obviously due to high volume fraction of residual (γ+γ’) eutectic and MC carbide in heat-treated microstructures.

Key words:  single crystal superalloy    Hf    elemental partitioning ratio    micrstructure    stress rupture property
                    发布日期:  2015-10-30      期的出版日期:  2015-10-29
基金资助: * 国家高技术研究发展计划项目2012AA03A513和2012AA03A511, 国家重点基础研究发展计划项目2010CB631201和教育部技术支撑重点项目625010337资助
引用本文:    
赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11. Acta Metall, 2015, 51(10): 1261-1272.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00363  或          http://www.ams.org.cn/CN/Y2015/V51/I10/1261
图1  4种铸态合金的OM像
图2  铸态合金Hf-3和Hf-4共晶区域的BSE-SEM像
Alloy Primary dendrite Volume fraction / %
arm spacing / μm Eutectic Carbide Micropore
Hf-1 329±12 5.5±2.1 0.08±0.05 0.22±0.05
Hf-2 340±11 8.5±2.5 0.15±0.07 0.10±0.03
Hf-3 347±9 9.6±1.7 0.61±0.05 0.08±0.04
Hf-4 337±11 13.3±2.3 1.20±0.07 0.08±0.05
表1  铸态合金显微组织表征
图3  铸态合金中各元素的凝固偏析系数
图4  4种铸态合金的DSC升温曲线
图5  合金Hf-4经1320 ℃热处理6 h空冷后的初熔组织
图6  合金Hf-1和Hf-4完全热处理后枝晶干处的典型组织
Alloy Size of γ’ phase / nm Volume fraction of γ’ phase / % Channel width of γ phase / nm
Hf-1 380±90 67.3±5.2 72±40
Hf-2 383±62 65.6±6.3 71±50
Hf-3 391±80 65.2±4.3 70±52
Hf-4 395±71 64.3±7.2 71±45
表2  完全热处理态合金枝晶干处的γ’相尺寸、体积分数及γ通道宽度
图7  合金Hf-1, Hf-3和Hf-4完全热处理后的OM像
图8  合金Hf-1, Hf-3和Hf-4完全热处理后未侵蚀的OM像
Alloy Eutectic Carbide Micropore
Hf-1 1.10±0.12 0.05±0.02 0.62±0.12
Hf-2 1.31±0.11 0.12±0.04 0.50±0.09
Hf-3 2.50±0.14 0.31±0.03 0.31±0.08
Hf-4 5.81±0.15 0.95±0.06 0.18±0.09
表3  完全热处理态合金的枝晶间残余共晶、碳化物及微孔体积分数
图9  完全热处理态合金中各元素在γ/γ’两相中的成分分配比
图10  合金在1100 ℃, 140 MPa持久断裂后γ/γ’界面位错网络
图11  1100 ℃, 140 MPa持久条件下合金平均位错间距与平均持久寿命的关系
图12  合金Hf-1 和Hf-4 在1100 ℃, 140 MPa持久断裂后的近断口处纵剖面组织
图13  MC碳化物阻碍固溶扩散通道示意图
[1] Pollock T M, Tin S. J Propul Power, 2006; 22: 361
[2] Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[3] Siegel D J, Hamilton J. Acta Mater, 2005; 53: 87
[4] Harris K, Wahl J B. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 45
[5] Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402
[6] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 295
[7] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[8] Duhl D, Sullivan C. J Met, 1971; 23: 38
[9] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[10] Zheng Y R, Cai Y L, Ruan Z C, Ma S W. J Aeronaut Mater, 2006; 26: 25 (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)
[11] Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095
[12] Wang L, Wang D, Liu T, Li X W, Jiang W G, Zhang G, Lou L H. Mater Charact, 2015; 104: 81
[13] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2004; A385: 105
[14] Sellamuthu R, Brody H, Giamei A. Metall Trans, 1986; 17B: 347
[15] Baldan A. J Mater Sci, 1990; 25: 4341
[16] Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮.金相实验技术. 北京: 冶金工业出版社, 2006: 159)
[17] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[18] Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287
[19] Gungor M N. Metall Trans, 1989; 20A: 2529
[20] Lecomte-Beckers J. Metall Trans, 1988; 19A: 2341
[21] Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173
[22] Chen Q Z, Kong Y H, Jones C N, Knowles D M. Scr Mater, 2004; 51: 155
[23] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290
[24] Fuchs G E. J Mater Eng Perform, 2002; 11: 19
[25] Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237)
[26] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge,UK: Cambridge University Press, 2006: 53
[27] Kong Y H. PhD Dissertation, The University of Hong Kong, 2005
[28] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2014; A626: 406
[29] Chen J Y, Feng Q, Cao L M, Sun Z Q. Mater Sci Eng, 2011; A528: 3791
[30] Neumeier S, Pyczak F, Goken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[31] Rowland L J, Feng Q, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 697
[32] Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 901
[33] Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[34] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 737
[35] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[36] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 35
[37] Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B eds., TMS 2009 Annual Meeting and Exhibition, San Francisco: Minerals, Metals & Materials Soc, 2009: 233
[38] Heckl A, Neumeier S, G?ken M, Singer R. Mater Sci Eng, 2011; A528: 3435
[39] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[40] Fleischmann E, Miller M K, Affeldt E, Glatzel U. Acta Mater, 2015; 87: 350
[41] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C. Acta Mater, 2010; 58: 931
[42] Hu P P, Chen J Y, Feng Q, Chen Y H, Cao L M, Li X H. Chin J Nonferrous Met, 2011; 21: 332 (胡聘聘, 陈晶阳, 冯 强, 陈艳辉, 曹腊梅, 李相辉. 中国有色金属学报, 2011; 21: 332)
[43] Hopgood A A, Martin J W. Mater Sci Eng, 1986; 82: 27
[44] Fritzemeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 265
[45] Wilson B C, Hickman J A, Fuchs G E. J Met, 2003; 55: 35
[46] Kong Y H, Chen Q Z, Knowles D M. J Mater Sci, 2004; 39: 6993
[1] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[2] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[3] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[4] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[5] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[6] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[7] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
[8] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[9] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[10] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[11] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[12] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[13] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[14] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[15] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed