Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 331-340    DOI: 10.11900/0412.1961.2015.00362
  论文 本期目录 | 过刊浏览 |
E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*
马宏驰1,杜翠薇1,刘智勇1(),郝文魁1,李晓刚1,2,刘超1
1 北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室, 北京 100083
2 中国科学院宁波材料技术与工程研究所, 宁波 315201
STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE
Hongchi MA1,Cuiwei DU1,Zhiyong LIU1(),Wenkui HAO1,Xiaogang LI1,2,Chao LIU1
1 Key Laboratory for Corrosion and Protection, Ministry of Education, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. Acta Metall Sin, 2016, 52(3): 331-340.

全文: PDF(17201 KB)   HTML
摘要: 

采用U形弯试样干湿交替腐蚀的实验方法, 结合电化学测试,裂纹形貌观察和锈层分析, 研究了E690钢在模拟SO2污染海洋大气环境中的应力腐蚀行为及机理. 结果表明, E690钢在SO2污染海洋大气环境中具有较高的应力腐蚀开裂(SCC)敏感性, 其SCC机理为阳极溶解和氢脆(AD+HE)的混合机制. 大气环境中的SO2可通过促进α-FeOOH的形成以及Ni和Cr在内锈层中的富集促进内锈层的致密化, 促进Cl-在锈层底部的浓聚和酸化, 进而大大促进SCC裂纹的萌生与扩展, 提高了E690钢的SCC敏感性.

关键词 E690高强钢SO2污染海洋大气应力腐蚀开裂薄液膜干湿交替腐蚀    
Abstract

With the development of industry, the atmosphere in many cities along the coastal lines such as Qingdao in China has been polluted with SO2, and has been changed to coastal-industrial atmosphere with the co-existence of SO2 and Cl-. The corrosion and stress corrosion cracking (SCC) behavior and mechanism of steel in this environment is different from that in the coastal atmosphere containing only Cl- or the industrial atmosphere containing only SO2. Previous study have indicated that SO2 in the marine atmosphere can greatly promote the stress corrosion cracking of high-strength steel due to acidification of thin electrolyte layer and reproduction of H+ through FeSO4. E690 steel, as a newly-developed high strength steel, is very promising to be widely used in offshore platform in the near future for its excellent performance. However, there is few research about its SCC behavior in marine atmosphere, especially in SO2-polluted atmosphere. Therefore, it's of great importance to investigate the SCC behavior and mechanism of E690 steel in this environment. In this work, U-bend specimen corrosion test under dry/wet cyclic condition, electrochemical measurements, crack morphology observation and rust layer analysis, were conducted to investigate the effect of SO2 on SCC behavior of E690 steel in simulated SO2-polluted marine atmosphere. The results indicated that E690 steel has a high SCC susceptibility in SO2-polluted marine atmosphere with a combined mechanism of anodic dissolution (AD) and hydrogen embrittlement (HE). SO2 in the atmosphere can facilitate the densification of inner rust layer by promoting the formation of α-FeOOH and enrichment of Ni and Cr in the inner rust layer, leading to the concentration of Cl- under the rust layer, which may result in the initiation and propagation of SCC cracks significantly and therefore enhance the SCC susceptibility.

Key wordsE690 high-strength steel    SO2-polluted marine atmosphere    stress corrosion cracking    thin electrolyte layer    dry/wet cyclic corrosion
收稿日期: 2015-07-09     
基金资助:*国家重点基础研究发展计划项目2014CB643300, 国家自然科学基金项目51471034, 51131005和51171025, 国家材料腐蚀平台项目和北京市青年英才计划项目资助
图1  E690钢的OM和SEM像
图2  U形弯试样的宏观形貌
图3  U形弯截面取样示意图
图4  E690钢经不同时长周浸实验后的EIS Nyquist图
图5  不同时长周浸实验后E690钢动电位极化曲线
图6  腐蚀电位和腐蚀电流密度随周浸时间的变化关系
图7  U形弯试样经过不同时长周浸腐蚀实验后的宏观形貌
图8  U形弯试样经过不同时长周浸腐蚀实验后的腐蚀产物形貌
图9  经过不同时长周浸腐蚀实验后U形弯试样弧顶表面的微观形貌
图10  E690 钢在含SO2海洋薄液环境中的裂纹扩展形貌
图11  E690 钢在含有和不含SO2[18]薄液环境中裂纹扩展深度随时间的变化
图12  E690 钢经90 d 周浸实验后的腐蚀产物EDS分析
图13  E690钢经不同时长周浸实验后的腐蚀产物XRD谱
图14  10 和90 d 锈层截面的EDS元素面分布
[1] Han E-H, Chen J M, Su Y J, Liu M.Mater China, 2014; 33(2): 65
[1] (韩恩厚, 陈建敏, 宿彦京, 刘敏. 中国材料进展, 2014; 33(2): 65)
[2] Nishikata A, Ichihara Y, Hayashi Y, Tsuru T.J Electrochem Soc, 1997; 144: 1244
[3] Zhong X K, Zhang G A, Qiu Y B, Chen Z Y, Guo X P, Fu C Y. Corros Sci, 2013; 66: 14
[4] Qiao L J, Luo J L, Mao X.Corrosion, 1998; 54: 115
[5] Dmytrakh I M, Smiyan O D, Syrotyuk A M, Bilyy O L.Int J Fatigue, 2013; 50: 26
[6] Gu B, Luo J, Mao X.Corrosion, 1999; 55: 96
[7] Li M C, Cheng Y F.Electrochim Acta, 2007; 52: 8111
[8] Chen W J, Hao L, Dong J H, Ke W, Wen H L.Acta Metall Sin, 2014; 50: 802
[8] (陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 金属学报, 2014; 50: 802)
[9] Wang C, Wang Z Y, Ke W.Acta Metall Sin, 2008; 44: 729
[9] (汪川, 王振尧, 柯伟. 金属学报, 2008; 44: 729)
[10] Chen W J, Hao L, Dong J H, Ke W.Corros Sci, 2014; 83: 155
[11] Wang J H, Wei F I, Chang Y S, Shih H C.Mater Chem Phys, 1997; 47: 1
[12] Nishimura R, Shiraishi D, Maeda Y.Corros Sci, 2004; 46: 225
[13] Zheng C B, Huang Y L, Wang X, Sun G J, Pan L Z.Mater Prot, 2011; 44(5): 34
[13] (郑传波, 黄彦良, 王旭, 孙广杰, 潘立志. 材料保护, 2011; 44(5): 34)
[14] Zheng C B.PhD Dissertation, Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 2008
[14] (郑传波. 中国科学院海洋研究所博士学位论文, 青岛, 2008)
[15] Xiong X Q, Xiong W M, Chen Y J, Sun X Z.Jiangxi Metall, 2012; 32(6): 21
[15] (熊小强, 熊文名, 陈英俊, 孙熙钟. 江西冶金, 2012; 32(6): 21)
[16] Zhang J, Cai Q W, Wu H B, Fan X H, Zhang M J.J Univ Sci Technol Beijing, 2012; 34: 657
[16] 张杰, 蔡庆伍, 武会宾, 樊学华, 张明洁. 北京科技大学学报, 2012; 34: 657)
[17] Wu B, Cai Q W, Zhang J, Wu H B.Heat Treat Met, 2011; 36(3): 26
[17] (武博, 蔡庆伍, 张杰, 武会宾. 金属热处理, 2011; 36(3): 26)
[18] Hao W K.PhD Dissertation, University of Science and Technology Beijing, 2015
[18] (郝文魁. 北京科技大学博士学位论文, 2015)
[19] Ma Y T, Li Y, Wang H F.Corros Sci, 2009; 51: 997
[20] Hao L, Zhang S X, Dong J H, Ke W.Corros Sci, 2012; 58: 175
[21] Collazo A, Novoa X R, Pérez C, Puga B.Electrochim Acta, 2008; 53: 7565
[22] Zhang Q C, Wu J S, Wang J J, Zheng W L, Chen J G, Li A B.Mater Chem Phys, 2003; 77: 603
[23] Castaño J G, Botero C A, Restrepo A H, Agudelo E A, Correa E, Echeverría F.Corros Sci, 2010; 52: 216
[24] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 59: 270
[25] Akiyama E, Li S, Shinohara T, Zhang Z, Tsuzaki K.Electrochim Acta, 2011; 56: 1799
[26] Akiyama E, Matsukado K, Wang M, Tsuzaki K.Corros Sci, 2010; 52: 2758
[27] Tsuru T, Huang Y L, Ali M R, Nishikata A.Corros Sci, 2005; 47: 2431
[28] Antony H, Perrin S, Dillmann P, Legrand L, Chaussé A.Electrochim Acta, 2007; 52: 7754
[29] Zhou Y L, Chen J, Liu Z Y.J Iron Steel Res, 2013; 20: 66
[30] Tamura H.Corros Sci, 2008; 50: 1872
[31] Kamimura T, Hara S, Miyuki H, Yamashita M, Uchida H.Corros Sci, 2006; 48: 2799
[32] Dillmann P, Mazaudier F, Hoerle S.Corros Sci, 2004; 46: 1401
[33] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T.Corros Sci, 1994; 36: 283
[34] Singh D D, Yadav S, Saha J K.Corros Sci, 2008; 50: 93
[35] Allam I M, Arlow J S, Saricimen H.Corros Sci, 1991; 32: 417
[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[6] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[7] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[8] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[9] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[10] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[11] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[12] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[13] 郝文魁,刘智勇,李晓刚,杜翠薇. 16Mn钢及其热影响区在碱性硫化物环境中的应力腐蚀行为与机理[J]. 金属学报, 2013, 49(7): 881-889.
[14] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[15] 朱敏,刘智勇,杜翠薇,李晓刚,李建宽,李琼,贾静焕. X65和X80管线钢在高pH值溶液中的应力腐蚀开裂行为及机理[J]. 金属学报, 2013, 49(12): 1590-1596.