Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 513-518    DOI: 10.11900/0412.1961.2015.00343
  论文 本期目录 | 过刊浏览 |
Mn对钢中富Cu相和NiAl相复合析出过程的影响*
沈琴1,王晓姣1,赵安宇2,何益锋1,方旭磊1,马佳荣1,刘文庆1()
1 上海大学微结构重点实验室, 上海 200444
2 常州杭钢卓信机械装备有限公司, 常州 213000
EFFECTS OF Mn ON MULTI-PRECIPITATES EVOLUTION OF Cu-RICH AND NiAl PHASE IN STEELS
Qin SHEN1,Xiaojiao WANG1,Anyu ZHAO2,Yifeng HE1,Xulei FANG1,Jiarong MA1,Wenqing LIU1()
1 Key Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
2 Changzhou Hanggang Zhuoxin Mechanical Equipment Co., Ltd., Changzhou 213000, China
引用本文:

沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
Qin SHEN, Xiaojiao WANG, Anyu ZHAO, Yifeng HE, Xulei FANG, Jiarong MA, Wenqing LIU. EFFECTS OF Mn ON MULTI-PRECIPITATES EVOLUTION OF Cu-RICH AND NiAl PHASE IN STEELS[J]. Acta Metall Sin, 2016, 52(5): 513-518.

全文: PDF(804 KB)   HTML
  
摘要: 

将Fe-Cu-Ni-Al和Fe-Cu-Ni-Al-Mn钢900 ℃固溶2 h 后水淬, 在500 ℃时效不同时间, 利用硬度测试和原子探针层析技术(APT)研究Mn对钢中多元强化相析出过程的影响. 硬度测试结果显示, Mn的加入增强了钢时效初期的析出强化效果, 加快了整个析出强化的进程. APT结果表明, Mn提高了时效初期析出相的形核率, 加快了析出相的长大和粗化速率, 进一步加速了富Cu相和NiAl相的分离. 这是由于Mn可降低析出相的形核能, 加快各元素在基体中的扩散速率, 同时Mn取代NiAl相中Al的位置, 在NiAl相中形成缺陷, 加速了Cu在其中的扩散速率.

关键词 析出强化富Cu相NiAl相原子探针层析技术    
Abstract

Precipitation hardened steels are widely used in various engineering fields due to their high strength, high fracture toughness, good ductility and ease of machinability. As two kinds of common precipitates, Cu-rich and NiAl phases play an important role on the mechanical properties of steels. The obvious effects of Mn on the precipitate evolution of Cu-rich phase and NiAl phase in steel have been observed respectively. However, the effect of Mn is complex, when Cu-rich phase and NiAl phase exist at the same time. This work aims to reveal the effects of Mn on the co-precipitation of Cu-rich phase and NiAl phase in steel. Fe-Cu-Ni-Al and Fe-Cu-Ni-Al-Mn steels were aged at 500 ℃ for different times after solution treatment at 900 ℃ for 2 h. Hardness testing indicates that by adding 2.17%Mn, Fe-Cu-Ni-Al-Mn steel shows a peak hardness of 420 HV which is 80 HV higher than Fe-Cu-Ni-Al steel (about 340 HV). And Fe-Cu-Ni-Al-Mn steel reaches the peak hardness at 1 h which is 1 h earlier as compared with Fe-Cu-Ni-Al steel at 2 h. Moreover, the peak hardness plateau of Fe-Cu-Ni-Al-Mn steel only lasts for 7 h which is far less than that of Fe-Cu-Ni-Al steel. All in all, the addition of Mn enhances the effect of precipitation hardening at early aging, and accelerates the whole process of precipitation hardening. Atom probe tomography (APT) results reveal that Mn increases the nucleation rate of precipitates at early ageing, accelerates the growing and coarsening of precipitates and then accelerates the separation of the Cu-rich phase and NiAl phase. This is due to Mn can reduce the energy for nucleation and accelerate the diffusion rate of elements in the matrix, while the partial substitution of Mn for Al in the NiAl phase can form point defects which can accelerate the diffusion rate of Cu in NiAl phase.

Key wordsprecipitation hardening    Cu-rich phase    NiAl phase    atom probe tomography
收稿日期: 2015-06-30     
基金资助:*国家自然科学基金钢铁联合基金培育项目U1460103和新金属材料国家重点实验室开放基金项目 2014-Z08资助
Steel Cu Ni Al Mn Fe
Fe-Cu-Ni-Al 1.63 3.24 1.09 - Bal.
Fe-Cu-Ni-Al-Mn 1.62 3.26 1.10 2.17 Bal.
表1  实验用钢的化学成分
图1  Fe-Cu-Ni-Al和Fe-Cu-Ni-Al-Mn钢900 ℃固溶2 h后在500 ℃等温时效不同时间后的硬度
图2  Fe-Cu-Ni-Al和Fe-Cu-Ni-Al-Mn钢500 ℃时效不同时间后Cu, Ni, Al和Mn原子的三维空间分布
Ageing time h Rp / nm Nv / 1023 m-3
Fe-Cu-Ni-Al Fe-Cu-Ni-Al-Mn Fe-Cu-Ni-Al Fe-Cu-Ni-Al-Mn
0.5 1.5±0.5 1.4±0.4 12.5 24.7
4 1.8±0.5 2.3±0.9 11.8 6.66
128 3.5±1.4 4.1±2.3 1.1 0.92
表2  Fe-Cu-Ni-Al和Fe-Cu-Ni-Al-Mn钢中析出相的平均等效半径RP和数量密度Nv
Steel
Ageing time / h Cu Ni Al Mn Fe
Cu-rich NiAl-rich Cu-rich NiAl-rich Cu-rich NiAl-rich Cu-rich NiAl-rich Cu-rich NiAl-rich
Fe-Cu-Ni-Al 4 47.4±1.8 39.9±4.2 11.3±1.1 12.3±2.8 17.4±1.4 20.3±3.4 - - 23.8±1.5 27.5±3.8
128 76.2±4.6 36.5±4.7 11.9±3.5 28.8±4.4 7.1±2.8 29.8±4.5 - - 6.7±0.7 4.8±2.1
Fe-Cu-Ni-Al-Mn 4 68.0±2.9 20.2±0.5 8.8±1.8 33.1±0.6 8.6±1.8 23.4±0.5 6.5±1.5 12.2±0.4 8.1±1.7 11.0±0.4
128 88.8±1.8 13.7±0.6 2.7±0.9 43.1±0.9 1.4±0.7 26.4±0.8 5.8±1.4 13.9±0.6 1.0±0.6 2.8±0.3
表3  Fe-Cu-Ni-Al和Fe-Cu-Ni-Al-Mn钢中析出相成分
图3  500 ℃时效128 h后析出相中Cu, Ni, Al和Mn原子的分布图
图4  500 ℃时效128 h后析出相中Cu, Ni, Al和Mn原子的浓度分布图
图5  Fe-Cu-Ni-Al-Mn钢在500 ℃时效16 h后析出相中Cu, Ni, Al和Mn原子的分布图及浓度分布图
[1] Zhang Z W, Liu C T, Wang X L, Miller M K, Ma D, Chen G, Williams J R, Chin B A.Acta Mater, 2012; 60: 3034
[2] Isheim D, Gagliano M S, Fine M E, Seidman D N.Acta Mater, 2006; 54: 841
[3] Oliveira S D, Tschiptschin A P, Pinedo C E.Mater Des, 2007; 28: 1714
[4] Miller M K, Wirth B D, Odette G R.Mater Sci Eng, 2003; A353: 133
[5] Glade S C, Wirth B D, Odette G R, Asoka-Kumar P, Sterne P A, Howell R H.Philos Mag, 2005; 85: 629
[6] Maruyama N, Sugiyama M, Hara T, Tamehiro H.Mater Trans JIM, 1999; 40: 268
[7] Jiao Z B, Luan J H, Miller M K, Yu C Y, Liu C T.Acta Mater, 2015; 84: 283
[8] Miller M K.Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000; 11, 160
[9] Isheim D, Seidman D N.Surf Interface Anal, 2004; 36: 569
[10] Isheim D, Vaynman S, Fine M E, Seidman D N.Scr Mater, 2008; 59: 1235
[11] Horing S, Wanderka N, Banhart J.Ultramicroscopy, 2009; 109: 574
[12] Jiao Z B, Luan J H, Zhang Z W, Miller M K, Ma W B, Liu C T.Acta Mater, 2013; 61: 5996
[13] Isheim D, Kolli R P, Fine M E, Seidman D N.Scr Mater, 2006; 55: 35
[14] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E.Metall Mater Trans, 2008; 39A: 363
[15] Zhang Z W, Liu C T, Miller M K, Wang X L, Wen Y, Fujita T, Hirata A, Chen M W, Chen G, Chin B A.Sci Rep, 2013; 3: 1327
[16] Kolli R P, Seidman D N.Acta Mater, 2008; 56: 2073
[17] Kapoor M, Isheim D, Ghosh G, Vaynman S, Fine M E, Chung Y W.Acta Mater, 2014; 73: 56
[18] Wang X J, Sha G, Shen Q, Liu W Q.Mater Sci Eng, 2015; A627: 340
[19] Song Y, Guo Z X, Yang R, Li D.Acta Mater, 2001; 49: 1647
[20] Othen P J, Jenkins M L, Smith G D W.Philos Mag, 1994; 70A: 1
[21] Wen Y R, Hirata A, Zhang Z W, Fujita T, Liu C T, Jiang J H, Chen M W.Acta Mater, 2013; 61: 2133
[22] Ping D H, Ohnuma H, Hirakawa Y, Kadoya Y, Hono K.Mater Sci Eng, 2005; A394: 285
[23] Kolli R P, Mao Z G, Seidman D N, Keane D T.Appl Phys Lett, 2007; 91: 241903
[24] Hume-Rothery W, Anderson E.Philos Mag, 1960; 5: 383
[25] Takeuchi A, Inoue A.Mater Trans JIM, 2005; 46: 2817
[1] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[2] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[3] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[4] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[5] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[6] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[7] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[8] 刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.
[9] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[10] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[11] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[12] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[13] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[14] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[15] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.