Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 281-288    DOI: 10.11900/0412.1961.2015.00314
  论文 本期目录 | 过刊浏览 |
TA15钛合金薄壁焊接件热处理校形研究*
李永奎1,权纯逸2,陆善平1(),焦清洋2,李世键2,孙忠海2
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2) 中航工业沈阳飞机工业(集团)有限公司, 沈阳 110034
STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT
Yongkui LI1,Chunyi QUAN2,Shanping LU1(),Qingyang JIAO2,Shijian LI2,Zhonghai SUN2
1 Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 AVIC Shenyang Aircraft Corporation, Shenyang 110034, China
引用本文:

李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. Acta Metall Sin, 2016, 52(3): 281-288.

全文: PDF(2310 KB)   HTML
摘要: 

针对飞机关键薄壁件焊接过程中产生的"簸箕"变形问题, 采用有限元结合实验验证的方法进行了焊接变形及焊后热处理校形的研究. 通过实验获得了材料的基础物性及高温蠕变行为, 验证了焊接及焊后热处理有限元模型. 利用可靠的热处理有限元模型进行了热处理工艺优化. 结果表明, 筋条焊后开槽导致沿筋条方向的应力释放及筋条-长衍焊点是导致"簸箕"变形的主要原因; 升高温度,增加载荷及延长保温时间能够改善热处理校形的效果, 并据此制定了面向工程应用的TA15钛合金薄壁构件的热处理工艺图.

关键词 TA15钛合金薄壁件焊接变形焊后热处理有限元模拟    
Abstract

Weld deformation of the thin-wall weldment used in fighter aircraft not only hinders its subsequent procedure of fabrication and assembling, but also reduces its fatigue strength. As a result, weld deformation shortens its service life essentially. Dustpan deformation is always produced in the thin-wall weldment after multiple-pass weld. In this work, combining with the experiment, the finite element method was adopted to analysis the deformation of the thin-wall weldment by multiple-pass weld and its shape correction by post weld heat treatment. For obtaining the fundamental properties such as thermal parameters and mechanical parameters of TA15 titanium alloy, a series of experiments were conducted at room temperature and high temperatures. Additionally, creep behaviors of TA15 titanium alloy were studied at the temperatures of 500, 550, 600, 650, 700 and 750 ℃, and the parameters of creep constitutive equations of the alloy were obtained with considering the analysis of post weld heat treatment. A thermal coupled temperature-displacement analysis for welding and post weld heat treatment was performed on a three dimensional shell model of protective grille. Experiments of multiple-pass weld and post weld heat treatment were used to testify the reliability of the finite element model of welding and post weld heat treatment. With using the reliable finite element model, the parameters of heat treatment were studied. The study indicates that, the fabrication on the crossing of structure section and fillet after fillet-wallboard weld leads the compression deformation release along the fillet, after that, the shrinkage distortion produced during spot welding of fillet-structural section mainly contributes the large dustpan deformation of the thin-wall weldment; increasing temperatures, enlarging loads and prolonging the hold time can improve the shape correction of the thin-wall weldment during post weld heat treatment, hence the guide maps of the post weld heat treatment for shape correction of the thin-wall weldment under 700 and 750 ℃ are worked out.

Key wordsthin-wall part of TA15 titanium alloy    weld deformation    post weld heat treatment    finite element method
收稿日期: 2015-06-15     
图1  TA15钛合金的热物性参数
图2  TA15钛合金的塑性本构关系
图3  TA15钛合金高温蠕变行为
Temperature / ℃ A / (s-1MPa-n) n
600 6.27×10-15 3.6
650 3.07×10-11 2.4
700 3.24×10-10 2.3
750 1.43×10-9 2.3
表1  600~750 ℃下TA15钛合金的蠕变参数
图4  TA15钛合金高温蠕变松弛本构关系
图5  复杂薄壁件宏观示意图
Location Current
A
Voltage
V
Welding rate
(cmmin-1)
Cooling condition
Fillet-wallboard 310~330 9~10 8~10 Copper billet+Ar
Structural section-wallboard 310~330 9~10 8~10 Ar
Fillet-structural section Spot welding Spot welding Spot welding Ar
表2  复杂薄壁件焊接工艺参数
图6  飞机复杂薄壁件焊接变形模拟结果
图7  焊后复杂薄壁件不同截面变形
图8  热处理校形模拟结果
图9  不同热处理温度下保温时间对复杂薄壁件校形的影响
图10  750 ℃下压板厚度对复杂薄壁件校形的影响
图11  热处理保温2 h 下温度对复杂薄壁件校形的影响
图12  TA15 钛合金复杂薄壁件焊后700 和750 ℃热处 理工艺图
[1] Li X W, Sha A X, Zhang W F, Chu J P, Ma J M.Titanium Ind Prog, 2003; 20(4-5): 90
[1] (李兴无, 沙爱学, 张旺峰, 储俊鹏, 马济民. 钛工业进展, 2003; 20(4-5): 90)
[2] Chen L, Gong S L, Yao W, Hu J L.China Weld, 2004; 13: 1
[3] Wang L F, Liu J Z, Hu B R.Trans China Weld Inst, 2007; 28(1): 97
[3] (王利发, 刘建中, 胡本润. 焊接学报, 2007; 28(1): 97)
[4] McClung R C.Fatigue Frat Eng Mater Struct, 2007; 30: 173
[5] Wang Y H, Li Y, Zhang W F, Ma J M.Chin J Nonferrous Met, 2010; 20: 641
[5] (王玉会, 李艳, 张旺峰, 马济民. 中国有色金属学报, 2010; 20: 641)
[6] Li J.PhD Dissertation, Beijing University of Technology, 2004
[6] (李菊. 北京工业大学博士学位论文, 2004)
[7] Guo S Q, Xu W L, Liu X S, Tian X T.Trans China Weld Inst, 1999; 20(1): 34
[7] (郭绍庆, 徐文立, 刘雪松, 田锡唐. 焊接学报, 1999; 20(1): 34)
[8] Li J, Yang J G, Weng L L, Fang H Y.Trans China Weld Inst, 2008; 29(11): 25)
[8] (李军, 杨建国, 翁路露, 方洪渊. 焊接学报, 2008; 29(11): 25)
[9] Liu X S, Xu W L, Fang H Y.Trans China Weld Inst, 2004; 25(2): 84
[9] (刘雪松, 徐文立, 方洪渊. 焊接学报, 2004; 25(2): 84)
[10] Adamus K, Kucharczyk Z, Wojsyk K, Kudla K.Comput Mater Sci, 2013; 77: 286
[11] Zhang Y, Yang J G, Liu X S, Fang H Y. Niu J, Zhou G T Eds., Physical and Numerical Simulation of Material Processing. Stafa-Zurich: Trans Tech Publications Ltd, 2012: 739
[12] Liu X S, Ji S D, Fang H Y.Trans Nonferrous Met Soc China, 2005; 15: 101
[13] Li J, Guan Q, Guo D L, Sun Y C, Du Y X, Shi Y W.J Mech Strength, 2003; 25: 637
[14] Li Y.Mach Des Manuf, 2002; (1): 86
[14] (李友. 机械设计与制造, 2002; (1): 86)
[15] Yan X J, Ge Y L.J Mater Eng Perform, 2014; 23: 3474
[16] Wanjara P, Dalgaard E, Gholipour J, Cao X J, Cuddy J, Jonas J J.Metall Mater Trans, 2014; 45A: 5138
[17] Hao C Y, Li Z L, Mao X F.Acta Metall Sin, 2001; 37: 709
[17] (郝传勇, 李正林, 毛先锋. 金属学报, 2001; 37: 709)
[18] Hu G, Li J W, Fu G, Mao Z Y.Aerospe Manuf Technol, 2005; (4): 1
[18] (胡刚, 李晋炜, 付纲, 毛智勇. 航天制造技术, 2005; (4): 1)
[19] Zhang W F, Wang Y H, Li Y, Ma J M.Chin J Nonferrous Met, 2010; 20: 523
[19] (张旺峰, 王玉会, 李艳, 马济民. 中国有色金属学报, 2010; 20: 523)
[20] Li Y K, Hongo H, Tabuchi M, Takahashi Y, Monma Y.Int J Press Vessels Pip, 2009; 86: 585
[21] Li Y K, Kaji Y, Igarashi T.Nucl Eng Des, 2012; 242: 100
[22] Pavelic V, Tanbakuchi R, Uyehara O, Myers P.Weld J, 1969; 48: 295
[23] Li Y K, Chen J D, Lu S P.Acta Metall Sin, 2014; 50: 121
[23] (李永奎, 陈俊丹, 陆善平. 金属学报, 2014; 50: 121)
[24] Wang Z C.Trans China Weld Inst, 2000; 21(2): 55
[24] (王者昌. 焊接学报, 2000; 21(2): 55)
[25] Wang J H, Lu H.Trans China Weld Inst, 2002; 23(3): 75
[25] (汪建华, 陆皓. 焊接学报, 2002; 23(3): 75)
[26] Cao J X, Fang B, Huang X, Li Z X.Chin J Rare Met, 2004; 28: 362
[26] (曹京霞, 方波, 黄旭, 李臻熙. 稀有金属, 2004; 28: 362)
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[4] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[5] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[6] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[7] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[8] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[9] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[10] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
[11] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[12] 赵志浩,徐振,王高松,崔建忠. 微合金化4043铝合金焊丝焊接接头的组织与性能[J]. 金属学报, 2013, 49(8): 946-952.
[13] 赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.
[14] 吴波 魏悦广 谭建松 王建平. 纳米晶Ni晶间断裂的数值模拟[J]. 金属学报, 2009, 45(9): 1077-1082.
[15] 石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.