Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 385-393    DOI: 10.11900/0412.1961.2015.00312
  论文 本期目录 | 过刊浏览 |
亚稳奥氏体对低温海工用钢力学性能的影响与机理*
王长军1(),梁剑雄1,刘振宝1,杨志勇1,孙新军2,雍岐龙2
1 钢铁研究总院特殊钢研究所, 北京 100081
2 钢铁研究总院工程用钢研究所, 北京 100081
EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING
Changjun WANG1(),Jianxiong LIANG1,Zhenbao LIU1,Zhiyong YANG1,Xinjun SUN2,Qilong YONG2
1 Institute of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2 Institute of Engineering Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
Changjun WANG, Jianxiong LIANG, Zhenbao LIU, Zhiyong YANG, Xinjun SUN, Qilong YONG. EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING[J]. Acta Metall Sin, 2016, 52(4): 385-393.

全文: PDF(1340 KB)   HTML
摘要: 

利用EBSD, HRTEM与热膨胀仪等实验手段对低碳中锰钢在淬火+回火 (QT) 与淬火+片状淬火+回火 (QLT) 工艺下的奥氏体形貌与相变过程进行了对比分析. 结果表明, QT与QLT工艺下所生成的回转奥氏体形貌、尺寸、位置以及由此导致的奥氏体稳定性差异是造成实验钢力学性能特别是低温冲击韧性巨大差异的最主要原因. 热力学与动力学分析表明, 由于QLT工艺在淬火+片状淬火 (QL) 阶段完成了C和Mn元素的第一次配分, 因而相比于QT热处理工艺, QLT工艺下回转奥氏体在生成速率显著提高的同时其生长模型也由一维双向增厚模式演变成一维单向增厚模式.

关键词 回转奥氏体低温韧性热膨胀仪生长模型    
Abstract

With the development of marine resources and its emerging markets, the marine equipments such as offshore drilling platform, subsea oil and gas transportation pipeline, and storage equipment of oil and gas are developing actively. It is urgent to develop a new type of steel with low cost and excellent toughness to satisfy the demand of marine equipment. In this work, the morphology of austenite and phase transition process in medium manganese steel during quenching and tempering (QT) and quenching, lamellarizing and tempering (QLT) heat treatments were investigated by using EBSD, HRTEM and thermal dilatometer. The results show that the discrepancy of stability in austenite caused by its shape, size and location leads to the more excellent toughness during QLT heat treatment compared to QT. It has been found from thermodynamical and dynamical viewpoint that the formation rates of reverted austenite during QLT heat treatment are significantly larger relative to QT due to the partition process of C and Mn elements in the lamellarizing stage. Moreover, two growth models of film-type reverted austenite are distinct during two heat treatments: the unidimensional two-sided growth mode during QT and unidimensional one-sided growth mode during QLT.

Key wordsreverted austenite    low temperature toughness    thermal dilatometer    growth model
收稿日期: 2015-06-15     
基金资助:* 国家重点基础研究发展计划资助项目 2014CB643306
图1  实验钢淬火+片状淬火+回火(QLT)与淬火+回火(QT)热处理工艺方案示意图
图2  不同热处理制度下实验钢的室温拉伸性能
图3  实验钢在不同热处理状态及不同温度下的冲击功(Akv)
图4  QT与QLT工艺热处理后实验钢的EBSD分析
图5  QT与QLT工艺热处理后实验钢中残余奥氏体的TEM明场像和SAED谱
图6  实验钢经QLT工艺处理后基体内回转奥氏体与回火马氏体的TEM像和Mn含量的EDS分析
图7  实验钢在QLT工艺处理过程中的热膨胀曲线和各阶段中残余奥氏体的XRD谱
图8  实验钢经水淬 (Q)与QL热处理工艺后的SEM像和元素分布的EDS线扫描分析
图9  实验钢在650 ℃时铁素体和渗碳体转变为奥氏体的相变驱动力与Mn含量的关系
图10  在650 ℃保温时实验钢中Mn含量对奥氏体半厚度SA的影响
图11  经QT与QLT工艺处理后奥氏体片层厚度的理论计算与测量值对比
图12  QLT热处理过程中实验钢的组织演变示意图
[1] Liu Z Y, Tang S, Chen J, Wang G D.Angang Technol, 2015; 391(1): 1
[1] (刘振宇, 唐帅, 陈俊, 王国栋. 鞍钢技术, 2015; 391(1): 1)
[2] Lu X H, Gao S, Zhang C Y.Met Form, 2015; (6): 8
[2] (芦晓辉, 高珊, 张才毅. 金属加工(热加工), 2015; (6): 8)
[3] Song Y, Li X, Rong L.Mater Sci Eng, 2011; A528: 4075
[4] Strife J R, Passoja D E.Metall Trans, 1980; 11A: 1341
[5] Fultz B, Kim J I, Kim Y H.Metall Trans, 1985; 16A: 2237
[6] Fultz B, Morris Jr J W.Metall Trans, 1985; 16A: 2251
[7] Zhang F T, Wang J W, Guo Y Y.Acta Metall Sin, 1984; 20: 405
[7] (张弗天, 王景韫, 郭蕴宜. 金属学报, 1984; 20: 405)
[8] Morris Jr J W, Guo Z, Krenn C R.ISIJ Int, 2001; 41: 599
[9] Morris Jr J W. ISIJ Int, 1998; 38: 1277
[10] Guo Z, Morris Jr J W.Scr Mater, 2005; 53: 933
[11] Wang C F, Wang M, Shi J.Scr Mater, 2008; 58: 492
[12] Hughes G M, Smith G E, Crocker A G.Mater Sci Technol, 2011; 27: 767
[13] Chiang J, Lawrence B, Boyd J D.Mater Sci Eng, 2011; A528: 4516
[14] Haidemenopoulos G N, Grujicic M, Olson G B.J Alloys Compd, 1995; 220(1): 142
[15] Horn R M, Ritchie R O.Metall Trans, 1978; 9A: 1039
[16] Lee S J, Park Y M, Lee Y K.Mater Sci Eng, 2009; A515: 32
[17] Timokhina I B, Hodgson P D, Pereloma E V.Metall Mater Trans, 2004; 35A: 2331
[18] Sugimoto K, Misu M, Kobayashi M.ISIJ Int, 1993; 33: 775
[19] Chen H C, Era H, Shimizu M.Metall Trans, 1989; 20A: 437
[20] Lambert A, Drillet J, Gourgues A F.Sci Technol Weld Join, 2000; 5: 168
[21] Ikawa H, Oshige H, Tanoue T.Trans Jpn Weld Soc, 1980; 11: 87
[22] Bayraktar E, Kaplan D.J Mater Process Technol, 2004; 153: 87
[23] Lan L, Qiu C, Zhao D.J Mater Sci, 2012; 47: 4732
[24] Bonnevie E, Ferriere G, Ikhlef A.Mater Sci Eng, 2004; A385: 352
[25] Wells C, Mehl R F.Transactions, 1940; 140: 279
[26] Xu Z, Zhao L C.Phase Transition Principle of Metal Solid State. Beijing: Science Press, 2004: 16
[26] (徐洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 16)
[27] Porter D A, Easterling K E.Phase Transformations in Metals and Alloys. Boca Raton: CRC Press, 1992: 32
[28] Xu Z Y.Thermodynamics of Materials. Beijing: Higher Education Press, 2009: 72
[28] (徐祖耀. 材料热力学. 北京: 高等教育出版社, 2009: 72)
[29] Aaronson H I, Laird C, Kinsman K R. Phase Transformations. Metals Park: ASM, 1970: 196
[30] Cahn J W, Kalonji G, Aaronson H I.Solid-Solid Phase Transformations. New York: AIME, 1982: 48
[31] Yong Q L.Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 86
[31] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 86)
[32] Luo H W, Shi J, Wang C.Acta Mater, 2011; 59: 4002
[1] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[2] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[3] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[4] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[5] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[6] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[7] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[8] 杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
[9] 杨跃辉 蔡庆伍 武会宾 王华. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274.
[10] 胡本芙; 贾成厂 . Fe-Cr-Mn(W,V)奥氏体钢的低温韧性[J]. 金属学报, 2001, 37(7): 703-708 .
[11] 国旭明; 钱百年 . 电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响[J]. 金属学报, 2000, 36(2): 177-180 .
[12] 金俊泽;王宗廷;郑贤淑;姚山. 金属凝固组织形成的仿真研究[J]. 金属学报, 1998, 34(9): 928-932.
[13] 焦育宁;刘清民;杨院生;胡壮麒. 合金动态结晶的微观动力学机制[J]. 金属学报, 1994, 30(12): 540-544.
[14] 雷鸣;郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现[J]. 金属学报, 1989, 25(1): 13-17.