Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 419-425    DOI: 10.11900/0412.1961.2015.00288
  论文 本期目录 | 过刊浏览 |
熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*
王海锋,苏海军,张军(),黄太文,刘林,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Haifeng WANG,Haijun SU,Jun ZHANG(),Taiwen HUANG,Lin LIU,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王海锋,苏海军,张军,黄太文,刘林,傅恒志. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响*[J]. 金属学报, 2016, 52(4): 419-425.
Haifeng WANG, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. Acta Metall Sin, 2016, 52(4): 419-425.

全文: PDF(658 KB)   HTML
摘要: 

采用熔体超温处理技术对新型含Re和Ru的镍基单晶高温合金熔体进行不同温度的超温处理, 利用EPMA研究了定向凝固过程中合金元素的溶质分布状态及溶质分配系数随熔体超温处理温度变化的演化规律. 结果表明, 在平界面定向凝固条件下, 随熔体超温处理温度的升高, Al, Ta元素在固液界面前沿液相一侧的分布呈现先增大后减小的趋势, 而Re, W, Ru, Co元素则呈现与之相反的规律, Mo, Cr元素无明显变化; 而熔体超温处理温度对Ru, Co, Mo, Cr元素的溶质分配系数影响较小. 熔体超温处理使合金熔体结构发生变化, 进而影响元素分布, 是导致溶质分配系数发生变化的主要原因.

关键词 熔体超温处理温度溶质分配系数固液界面    
Abstract

Solute partition coefficient plays an important role in determining the microstructure and mechanical properties of Ni-based superalloys. Melt superheating treatment can greatly affect the melt structure and redistribution of solute atom in the melt. However, up to date, there are few investigations of the influence of melt superheating treatment on the solute partition coefficient, especially for the new-generation Ni-based single crystal superalloy with additions of Re and Ru. Therefore, in this work, the influence of melt superheating treatment temperature on the solute partition coefficient of a new Ni-based single crystal superalloy with Re and Ru elements under planar solid/liquid (S/L) interface under directional solidification conditions was systematically investigated by using EPMA. It was found that the distribution of solute elements, such as Al, Ta, Ru, Re, W, Co, showed remarkable change in both sides of the S/L interface with increasing melt superheating treatment temperature, but there was little change for the solute elements of Mo and Cr. With increasing the melt superheating treatment temperature, the concentration of solute elements for Al and Ta increased firstly and then decreased, but it showed an opposite trend for Re, W, Ru and Co. Additionally, the change of the solute partition coefficients for Ru, Co, Mo and Cr were small with increasing the melt superheating treatment temperature. The main reasons related to the above changes can be ascribed to that the variation of melt superheating treatment temperature affects the size of the atom clusters in melt, which gives rise to the variation of atomic distribution, and thus leads to the change of solute partition coefficients.

Key wordsmelt superheating treatment temperature    solute partition coefficient    solid/liquid interface
收稿日期: 2015-05-28     
基金资助:*国家自然科学基金项目51331005, 51472200和51272211, 航空科学基金项目2015ZF53067及国家高技术研究发展计划项目2012AA03A511资助
图1  镍基高温合金熔体超温处理工艺示意图
图2  溶质元素分布的EPMA分析示意图
图3  镍基高温合金溶质元素在固液(S/L)界面两侧分布的EPMA分析
图4  镍基高温合金固液界面两侧溶质浓度与液相的平均溶质浓度随熔体超温处理温度的变化
图5  镍基高温合金各主要元素的溶质分配系数(ki)与有效溶质分配系数(kieff)随熔体超温处理温度的变化
图6  镍基高温合金各元素的偏析系数(ki')随熔体超温处理温度的变化
[1] Wollgramm P, Buck H, Neuking K, Parsa A B, Schuwalow S, Rogal J, Drautz R, Eggeler G.Mater Sci Eng, 2015; A628: 382
[2] Wang X G, Liu J L, Jin T, Sun X F, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y.Mater Des, 2015; 67: 544
[3] Tian S G, Wang M G, Li T, Qian B J, Xie J.Mater Sci Eng, 2010; A527: 5445
[4] Pollock T M, Murphy W H.Metall Mater Trans, 1996; 27A: 1088
[5] Gui Z L.Aviation Product Eng, 1995; (4): 12
[5] (桂忠楼. 航空制造工程, 1995; (4): 12)
[6] Stepanova N N, Roddionov D P, Turkham Y E, Sazonova V A, Khlystov E N.J Phys Met Metallogr, 2003; 95: 605
[7] Tyagunov A G, Baryshev E E, Kostina T K, Semenova I P, Lesnikov V P.Met Sci Heat Treat, 1999; 41: 539
[8] Galenko P K, Reutzel S, Herlach D M, Fries S G, Steinbach I, Apel M.Acta Mater, 2009; 57: 6172
[9] Yin F S, Sun X F, Hou G C, Zheng Q, Guan H R, Hu Z Q.Rare Met Mater Eng, 2004; 33: 659
[9] (殷凤仕, 孙晓峰, 侯贵臣, 郑启, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2004; 33: 659)
[10] Zhang J, Li B, Zou M M, Wang C S, Liu L, Fu H Z.J Alloys Compd, 2009; 484: 755
[11] Zou M M, Zhang J, Li B, Liu L, Fu H Z.Int J Mod Phys, 2009; 23B: 1107
[12] Wang Z, Li J G, Zhao N R, Jin T, Zhang J H.Acta Metall Sin, 2002; 38: 922
[12] (王震, 李金国, 赵乃仁, 金涛, 张静华. 金属学报, 2002; 38: 922)
[13] Wang C S, Zhang J, Liu L, Fu H Z.J Alloys Compd, 2010; 508: 443
[14] Reed R C, Tao T, Warnken N.Acta Mater, 2009; 57: 5906
[15] Mao X M, Fu H Z, Shi Z X, Liu H M.Acta Metall Sin, 1983; 19: A246
[15] (毛协民, 傅恒志, 史正兴, 刘惠铭. 金属学报, 1983; 19: A246)
[16] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.Acta Metall Sin, 2012; 48: 847
[16] (刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 847)
[17] Liu G, Liu L, Zhao X B, Ge B M, Zhang J, Fu H Z.Metall Mater Trans, 2011; 42A: 2736
[18] Luo Y P, Zhou Y Z, Liu J L.Acta Metall Sin, 2014; 50: 1025
[18] (罗银屏, 周亦胄, 刘金来. 金属学报, 2014; 50: 1025)
[19] Mushongera L T, Fleck M, Kundin J, Wang Y, Emmerich H.Acta Mater, 2015; 93: 66
[20] Yu X X, Wang C Y, Zhang X N, Yan P, Zhang Z.J Alloys Compd, 2014; 582: 301
[21] Ganesan M, Dye D, Lee P D.Metall Mater Trans, 2005; 36A: 2202
[22] Frenkel J.Kinetic Theory of Liquids. New York: Dover Publication Inc, 1955: 93
[23] Sidorov V E, Calvo-Dahlborg M, Dahlborg U, Popel P S, Chernoborodova S.J Mater Sci, 2000; 35: 2257
[24] Yin F S, Guan H R, Sun X F, Hu Z Q.Acta Metall Sin, 2005; 41: 1192
[24] (殷凤仕, 管恒荣, 孙晓峰, 胡壮麒. 金属学报, 2005; 41: 1192 )
[25] Kolotukhin E V, Tjagunov G V.J Mater Process Technol, 1995; 53: 223
[26] Brewer L.In: Walter J L, Jackson M R, Sims C T eds., Chemical Bonding Theory Applied to Metals in Alloying, Metals Park, OH: ASM International, 1988: 5
[27] Murakami H, Saito Y, Harada H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 249
[28] Ofori A, Rossouw C, Humphreys C.Acta Mater, 2005; 53: 97
[29] Yin F S, Sun X F, Li J G, Guan H R, Hu Z Q.Mater Lett, 2003; 57: 3379
[30] Xin T Z, Tang S, Ji F, Ning L K, Zheng Z.J Alloys Compd, 2015; 641: 229
[31] Cai Y W.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 1996
[31] (蔡英文. 西北工业大学博士学位论文, 西安, 1996)
[32] Guo Y G, Li S M, Liu L, Fu H Z.Acta Metall Sin, 2008; 44: 367
[32] (郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 367)
[33] Stefanescu D M.Science and Engineering of Casting Solidification. 2nd Ed., New York: Springer Science+Business Media, LLC, 2009: 174
[1] 燕云程, 丁宏升, 宋尽霞, 康永旺, 陈瑞润, 郭景杰. 工艺参数对电磁冷坩埚定向凝固Nb-Si基合金固液界面的影响[J]. 金属学报, 2014, 50(9): 1039-1045.
[2] 闵志先 沈军 冯周荣 王灵水 刘林 傅恒志. 定向凝固DZ125合金的溶质分配系数及偏析行为的研究[J]. 金属学报, 2010, 46(12): 1543-1548.
[3] 陈长乐;陆福一. 二元合金非平衡凝固溶质分配的统计模型[J]. 金属学报, 1997, 33(5): 455-460.