Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 233-240    DOI: 10.11900/0412.1961.2015.00282
  论文 本期目录 | 过刊浏览 |
新型高氮钢的腐蚀和空蚀交互作用研究*
乔岩欣1(),王硕1,刘彬1,郑玉贵2,李花兵3,姜周华3
1 江苏科技大学材料科学与工程学院, 镇江 212003
2 中国科学院金属研究所, 沈阳 110016
3 东北大学冶金学院, 沈阳110819
SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL
Yanxin QIAO1(),Shuo WANG1,Bin Liu1,Yugui ZHENG2,Huabing LI3,Zhouhua JIANG3
1 Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

乔岩欣,王硕,刘彬,郑玉贵,李花兵,姜周华. 新型高氮钢的腐蚀和空蚀交互作用研究*[J]. 金属学报, 2016, 52(2): 233-240.
Yanxin QIAO, Shuo WANG, Bin Liu, Yugui ZHENG, Huabing LI, Zhouhua JIANG. SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(2): 233-240.

全文: PDF(10022 KB)   HTML
摘要: 

利用磁致伸缩空蚀试验机研究了高氮钢在蒸馏水、0.5 mol/L NaCl和0.5 mol/L HCl溶液中的空蚀行为, 利用SEM观察了试样表面和截面的空蚀形貌, 对静态和空蚀条件下的极化曲线进行了测量. 结果表明, 高氮钢在3种介质中空蚀8 h后的失重随着介质的腐蚀性增加而增加, 失重率曲线存在一个孕育期, 孕育期随着介质腐蚀性的增加而缩短; 高氮钢的空蚀破坏以韧性断裂为主, 在HCl溶液中, 由于H的存在, 促进了位错的滑移, 导致裂纹失稳扩展, 裂纹扩展并相互连接造成材料的空蚀抗力降低.

关键词 高氮钢腐蚀空蚀交互作用    
Abstract

The cavitation erosion (CE) is a serious problem in engineering components in contact with a liquid in which the pressure fluctuates. The CE resistance of material is related to the microstructure, hardness, work hardening ability, superelasticity and superplasticity, or strain or stress induced phase transformation of material. The high nitrogen stainless steel (HNSS) is attractive for its low cost in application where a combination of good strength and toughness, high work hardening capacity, and corrosion resistance is required. These attractive properties cause the nitrogen alloyed stainless steels to be the good candidates with relatively high CE resistance. In this work, the CE behavior of HNSS in distilled water, 0.5 mol/L NaCl and 0.5 mol/L HCl solutions was investigated on the base of mass loss and polarization curve. The micrographs of damaged surface were observed by using SEM. The results showed that the cumulative mass loss of HNSS after subject to CE for 8 h was the highest in 0.5 mol/L HCl solution and lowest in distilled water. There existed an incubation period in mass loss rate curve and the incubation period shorted with the increase of the corrosive of tested solution. The plastic fracture was the dominant damage mode of HNSS subject to CE condition. The plastic deformation and dislocation motion of HNSS were facilitated by diffusion of hydrogen in HCl solution, therefore the initiation and propagation of crack were accelerated and removal of materials was accelerated by propagation and connection of cracks.

Key wordshigh nitrogen stainless steel    corrosion    cavitation erosion    synergistic effect
收稿日期: 2015-05-27     
基金资助:*国家自然科学基金项目51401092, 51305172, 51131008, 51434004, U1435205和51304041资助
图1  带电化学测试系统的磁致伸缩空蚀试验机示意图
图2  高氮钢的微观组织结构
图 3  高氮钢在3种介质中的失重和失重率曲线
图4  高氮钢在0.5 mol/L NaCl和0.5 mol/L HCl溶液中静态和空蚀条件下的极化曲线
图 5  高氮钢在蒸馏水中空蚀不同时间后的SEM像
图 6  高氮钢在0.5 mol/L NaCl溶液中空蚀不同时间后的SEM像
图 7  高氮钢在0.5 mol/L HCl溶液中空蚀不同时间后的SEM像
图8  高氮钢在蒸馏水、0.5 mol/L NaCl和0.5 mol/L HCl溶液中空蚀8 h后的截面形貌
Solution Mass loss / mg Damage fraction / %
WT WC WE WEIC WCIE fC fE fEIC fCIE
NaCl 6.55 0.01 5.35 0.67 0.52 0.15 81.68 10.22 7.95
HCl 7.90 0.05 5.35 1.45 1.05 0.63 67.71 18.35 13.31
表1  高氮钢在NaCl和HCl溶液中空蚀和腐蚀交互作用各因素引起的失重及其在总失重中所占的比例
图9  高氮钢空蚀破坏机制示意图
[1] Yu H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[1] (于宏. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[2] Luo S Z, Zheng Y G, Li M C, Yao Z M, Ke W.Corrosion, 2003; 59: 597
[3] Tomlinson W J, Talks M G.Tribol Int, 1991; 24: 67
[4] Bregliozzia G, Di-Schino A, Ahmed S I U, Kenny J M, Haefke H.Wear, 2005; 258: 503
[5] Kwok C T, Man H C, Leung L K.Wear, 1997; 211: 84
[6] Ogino K, Hida A, Kishima S.Corrosion, 1988; 44: 97
[7] Fu W T, Zheng Y Z, Jing T F, Yao M.Wear, 1997; 205: 28
[8] Fu W T, Zheng Y Z, Jing T F, Yao M. Wear, 2001; 249: 788
[9] Mills D J, Knutsen R D.Wear, 1998; 215: 83
[10] Liu W.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001
[10] (柳伟. 中国科学院金属研究所博士学位论文, 沈阳, 2001)
[11] Luo S Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2003
[11] (骆素珍. 中国科学院金属研究所博士学位论文, 沈阳, 2003)
[12] Zheng Y G, Luo S Z, Ke W.Tribol Int, 2008; 41: 1181
[13] Qiao Y X, Zheng Y G, Wu X Q, Ke W, Yang K, Jiang Z H.Tribol Mater Surf Int, 2007; 1: 165
[14] Hoeppner D W, Goss G L.Wear, 1974; 27: 61
[15] Zheng Y G, Luo S Z, Ke W.Wear, 2007; 262: 1308
[16] Luo S Z, Zheng Y G, Liu W, Jing H M, Yao Z M, Ke W. J Mater Sci Technol, 2003; 19: 346
[17] Al-Hashem A, Caceres P G, Abdullah A, Shalaby H M.Corrosion, 1997; 52: 103
[18] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W.Wear, 2003; 254: 713
[19] Mesa D H, Garzón C M, Tschiptschin A P.Wear, 2011; 271: 1372
[20] Santos J F, Garzón C M, Tschiptschin A P.Mater Sci Eng, 2004; A382: 378
[21] Kwok C T, Man H C, Cheng F T.Mater Sci Eng, 1998; A242: 108
[22] Engelberg G, Yahalom J.Corros Sci, 1972; 12: 469
[23] Zheng Y G, Yao Z M, Zhang Y S, Wei X Y, Ke W.Acta Metall Sin, 2000; 36: 51
[23] (郑玉贵, 姚治铭, 张玉生, 魏翔云, 柯伟. 金属学报, 2000: 36: 51)
[24] Kwok C T, Cheng F T, Man H C.Mater Sci Eng, 2000; A290: 145
[25] Zheng Y G, Yao Z M, Wei X Y, Ke W. Wear, 1995; 186-187: 555
[26] Feng D.Physics of Metals. Beijing: Science Press, 1999: 1
[26] (冯端. 金属物理. 北京:科学出版社, 1999: 1)
[27] Qiao L J, Chu W Y, Mao X.Corrosion, 1996; 52: 275
[28] Chu W, Liu T, Hsiao C, Li S. Corrosion, 1981; 37: 320
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.