Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 257-263    DOI: 10.11900/0412.1961.2015.00281
  论文 本期目录 | 过刊浏览 |
K416B镍基铸造高温合金的700 ℃高周疲劳行为*
谢君,于金江(),孙晓峰,金涛
中国科学院金属研究所, 沈阳 110016
HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃
Jun XIE,Jinjiang YU(),Xiaofeng SUN,Tao JIN
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(9879 KB)   HTML  
摘要: 

通过高周疲劳性能测试和组织形貌观察, 研究了K416B镍基高温合金700 ℃的高周疲劳行为. 结果表明, 在700 ℃和应力比R=-1条件下, 合金疲劳寿命随着应力的升高而减小, 高周疲劳强度为175 MPa; 在低应力条件下, 形变位错在γ基体中发生不同取向滑移, 随着应力增加, 位错剪切γ'相, 形成层错; 在拉压高周疲劳期间, 合金中开动多个滑移系, 并沿不同方向发生扭曲变形, 在γ +γ'共晶及碳化物附近产生应力集中, 致使裂纹源萌生于合金表面附近的共晶及块状碳化物处. 随着高周疲劳进行, 裂纹在扩展区沿枝晶间扩展, 并在瞬断区发生典型的解理断裂.

关键词 K416B镍基高温合金高周疲劳变形机制断裂特征    
Abstract

Ni-based speralloys have been widely used to make the blade parts of the advanced aeroengines for their high temperature tolerance and good mechanical property. During high temperature service, the materials endure the effects of temperature and alternating load, causing high-cycle fatigue deformation on the hot-end components. Meanwhile, the fatigue behaviors of the alloy are closely related to the deformation mechanisms and its microstructure characteristics, such as the size, distribution and morphology of γ' phase and carbides, and the fatigue fracture of the using materials possesses unpredictability. Therefore, investigating fatigue behaviors of the material is of significance in alloy design and life prediction. But the high-cycle fatigue behavior of K416B superalloy with high W content is still unclear up to now. For this reason, by means of high-cycle fatigue property measurement and microstructure observation, the high-cycle fatigue behavior of K416B Ni-based superalloy at 700 ℃ has been investigated. The results show that at 700 ℃ and stress ratio R=-1, the high-cycle fatigue life of K416B superalloy decreases with the stress increasing, and high-cycle fatigue strength of the alloy is 175 MPa. At the condition of low stress amplitude, the deformed dislocations may slip along different orientations in the matrix. With the stress amplitude increasing, the dislocations may shear into γ' phase and form the stacking fault. During tension and compression high-cycle fatigue, multiple slip systems are activated in the alloy, and the distortion occurs along various directions, resulting in stress concentration on the regions of γ +γ' eutectic and carbides. The crack sources may be initiated at the eutectic and blocky carbide near the surface of the alloy. As high-cycle fatigue goes on, the cracks propagate along the inter-dendrite in expansion region, and the typical cleavage fracture occurs in the final rupture region.

Key wordsK416B Ni-based superalloy    high-cycle fatigue    deformation mechanism    fracture feature
收稿日期: 2015-06-08      出版日期: 2016-03-17
基金资助:* 国家重点基础研究发展计划项目2010CB631200和2010CB631206以及国家自然科学基金项目50931004和51571196资助

引用本文:

谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃. Acta Metall, 2016, 52(3): 257-263.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00281      或      http://www.ams.org.cn/CN/Y2016/V52/I3/257

图1  铸态K416B高温合金的SEM像
图2  K416B高温合金在700 ℃, 应力比为R=-1的高周疲劳应力-循环次数(S-N)曲线
图3  在700 ℃施加不同应力条件下K416B高温合金高周疲劳断裂后的TEM像
图4  在700 ℃施加不同应力条件下K416B高温合金高周疲劳断裂后的SEM像
图5  在700 ℃施加应力220 MPa条件下K416B高温合金高周疲劳断口的SEM像
图6  在700 ℃施加应力260 MPa条件下K416B高温合金高周疲劳断口的SEM像
[1] Wang J, Zhou L Z, Sheng L Y, Guo J T.Mater Des, 2012; 39: 55
[2] Lin Y C, Wen D X, Deng J, Liu G, Chen J.Mater Des, 2014; 59: 115
[3] Francis E M, Grant B M B, Fonseca J Q D, Phillips P J, Mills M J, Daymond M R, Preuss M.Acta Mater, 2014; 74: 18
[4] Musinski W D, McDowell D L.Int J Fatigue, 2012; 37: 41
[5] Gao Y, St?lken J S, Kumar M, Ritchie R O.Acta Mater, 2007; 55:3155
[6] Chu Z K, Yu J J, Sun X F, Guan H R, Hu Z Q.Mater Sci Eng, 2008; A496: 355
[7] Chan K S.Int J Fatigue, 2010; 32: 1428
[8] Morrison D, Moosbrugger J.Int J Fatigue, 1997; 19: 51
[9] Woodford D A, Mowbray D F.Mater Sci Eng, 1974; 16: 35
[10] Lee D, Shin I, Kim Y, Koo J M, Seol C S.Int J Fatigue, 2014; 62: 62
[11] Reuchet J, Rémy L.Mater Sci Eng, 1988; A101: 55
[12] Madison J, Spowart J E, Rowenhorst D J, Fiedler J, Pollock T M.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 881
[13] Du B N, Yang J X, Cui C Y, Sun X F.Mater Des, 2015; 65: 57
[14] Abbadi M, H?hner P, Belouettar S, Zenasni M.Mater Des, 2011; 32: 2710
[15] Kunz L, Luká? P, Kone?ná R.Int J Fatigue, 2010; 32: 908
[16] Kunz L, Luká? P, Kone?ná R, Fintová S.Int J Fatigue, 2012; 41: 47
[17] Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A454-455: 357
[18] Soula A, Renollet Y, Boivin D, Pouchou J L, Locq D, Caron P. Mater Sci Eng, 2009; A510-511: 301
[19] Sajjadi S A, Nategh S, Guthrie R I L.Mater Sci Eng, 2002; A325: 484
[20] Han G M, Zhang Z X, Li J G, Jin T, Sun X F, Hu Z Q.Acta Metall Sin, 2012; 48: 170
[20] (韩国明, 张振兴, 李金国, 金涛, 孙晓峰, 胡壮麒. 金属学报, 2012; 48: 170)
[21] Hirsch M R, Amaro R L, Antolovich S D, Neu T W.Int J Fatigue, 2014; 62: 53
[22] Gelmedin D, Lang K H.Procedia Eng, 2010; 2: 1343
[23] Moalla M, Lang K H, L?he D. Mater Sci Eng, 2001; A319-321: 647
[24] Evans W J, Screech J E, Williams S J.Int J Fatigue, 2008; 30: 257
[25] Huang Z W, Wang Z G, Zhu S J, Yuan F H, Wang F G.Mater Sci Eng, 2006; A432: 308
[26] Xie J, Yu J J, Sun X F, Jin T, Sun Y.Acta Metall Sin, 2015; 51: 458
[26] (谢君, 于金江, 孙晓峰, 金涛, 孙元. 金属学报, 2015; 51: 458)
[27] Xie J, Yu J J, Sun X F, Jin T, Yang Y H. Acta Metall Sin, 2015; 51:943
[27] (谢君, 于金江, 孙晓峰, 金涛, 杨彦红. 金属学报, 2015; 51: 943)
[1] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[2] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[3] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[4] 郭强, 郭杏林, 樊俊铃, 吴承伟. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 400-406.
[5] 苏勇,田素贵,于慧臣,于莉丽. 镍基单晶高温合金中温稳态蠕变期间的变形机制*[J]. 金属学报, 2015, 51(12): 1472-1480.
[6] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[7] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[8] 卢磊, 尤泽升. 纳米孪晶金属塑性变形机制*[J]. 金属学报, 2014, 50(2): 129-136.
[9] 韩国明 张振兴 李金国 金涛 孙晓峰 胡壮麒. DD98M镍基单晶高温合金900℃高周疲劳行为[J]. 金属学报, 2012, 48(2): 170-175.
[10] 秦小梅 陈礼清 邸洪双 邓伟. 变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47(9): 1117-1122.
[11] 刘恩泽 郑志 佟健 宁礼奎 管秀荣. DZ468合金高周疲劳性能研究[J]. 金属学报, 2010, 46(6): 708-714.
[12] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[13] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[14] 王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.
[15] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.