Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1242-1252    DOI: 10.11900/0412.1961.2015.00265
  本期目录 | 过刊浏览 |
GH4033合金短时超温后的显微组织损伤及力学性能
童锦艳1,2,冯微1,3,付超2,郑运荣2,冯强1,2()
2 北京科技大学新金属材料国家重点实验室, 北京 100083
3 北京航空材料研究院熔铸中心, 北京 100095
MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME
Jinyan TONG1,2,Wei FENG1,3,Chao FU2,Yunrong ZHENG2,Qiang FENG1,2()
1 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
3 Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.
Jinyan TONG, Wei FENG, Chao FU, Yunrong ZHENG, Qiang FENG. MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME[J]. Acta Metall Sin, 2015, 51(10): 1242-1252.

全文: PDF(11597 KB)   HTML
摘要: 

对已服役的航空发动机用GH4033合金二级涡轮叶片榫头部位进行900~1100 ℃短时超温3 min热处理, 之后再进行组织表征和力学性能测试, 研究了短时超温过程中合金的组织损伤及其对室温硬度和700 ℃, 430 MPa下持久寿命的影响规律. 结果表明, GH4033合金中γ’相颗粒在短时超温过程中发生粗化和回溶现象, 当温度达到980 ℃及以上时, 保温3 min后γ’相完全回溶; 随着超温温度的升高, 晶界碳化物逐渐溶解, 1100 ℃时完全溶解, 并造成晶粒开始长大. 短时超温后叶片合金的室温硬度随着γ’相的回溶急剧下降, 当γ’相完全回溶时室温硬度降低至170 HV左右. 合金在700 ℃, 430 MPa下持久寿命随着短时超温温度的升高呈现先增大后急剧降低的规律, 其主要受γ’相的回溶与再析出以及晶界碳化物回溶的影响.

关键词 GH4033变形合金涡轮叶片超温显微组织持久性能    
Abstract

Service safety of turbine blades in aircraft engines are threatened by microstructural and property degradation instantly caused by overheating during service. Systematic investigations about microstructural degradation during overheating exposures and its influence on mechanical properties of turbine blades during service are limitedly reported. In this work, microstructure and mechanical properties of GH4033 alloy, which was sectioned from the shank of a serviced 2nd stage turbine blade in an aircraft engine, were studied after overheating at 900~1100 ℃ for 3 min. Microstructural degradation during overheating exposures as well as its influence on room temperature hardness and stress rupture life at 700 ℃, 430 MPa were analyzed. The results of microstructural characterization indicated that the coarsening and dissolution of γ’ precipitates were introduced by overheating exposures, and all of the γ’ precipitates dissolved at 980 ℃ for 3 min. Gradual dissolution of grain boundary (GB) carbides was observed with the increase of overheating temperature. Complete dissolution of GB carbides at 1100 ℃ resulted in grain growth. The room temperature hardness after overheating exposures decreased grossly with the dissolution of γ’ phase. Due to the dissolution and re-precipitation of γ’ phase as well as the dissolution of GB carbides, the stress rupture life under 700 ℃, 430 MPa of GH4033 alloy was initially increased and then decreased significantly.

Key wordsGH4033 wrought alloy    turbine blade    overheating    microstructure    rupture property
    
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部技术支撑重点项目625010337资助
图1  GH4033合金二级涡轮叶片轮廓示意图及服役温度分布
图2  GH4033合金板状持久非标样试样示意图
图3  GH4033合金的原始微观组织
图4  GH4033 合金的DSC曲线
图5  原始状态GH4033合金和在1100 ℃超温处理3 min后的OM像
图6  原始状态和经不同温度超温处理3 min并水淬后GH4033 合金晶界碳化物的分布状态
图7  GH4033 合金经不同温度超温处理3 min 并水淬后基体中γ’相的形貌
图8  原始状态和经不同温度超温处理3 min 后GH4033合金的Vickers硬度
图9  GH4033 合金经不同温度超温处理3 min 后在700 ℃, 430 MPa下的持久寿命
Temperature / ℃ Size / nm Volume fraction / %
As-received 26±3 14.0
900 32±4 12.0
950 37±5 8.7
980~1100 - 0
表1  不同温度超温处理3 min 后GH4033 合金中γ’相颗粒的平均尺寸和体积分数
图10  不同温度超温处理3 min后GH4033 合金经700 ℃, 2 h 热处理并水淬后的晶界碳化物和γ’相形貌
图11  不同温度超温处理3 min后GH4033 合金断后的晶界碳化物和γ’相形貌
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge, UK: Cambridge University Press, 2006: 18
[2] Guo J T. Materials Science and Engineering for Superalloys. Vol.3, Beijing: Science Press, 2010: 508 (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: 508)
[3] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F. Mater China, 2012; 31(12): 21 (冯 强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 21)
[4] Koul A, Wallace W. Met Mater Trans, 1983; 14A: 183
[5] Liburdi J, Lowden P, Nagy D, De Priamus T R, Shaw S. Proc ASME Turbo Expo, Orlando: International Gas Turbine Institute,2009: 819
[6] Yoo K B, Lee H S. Mater Sci Forum, 2010; 654-656: 2523
[7] Liu Q Q. Manufacture Technologies and Failure Analyses of Blades in Aircraft Engines. Beijing: Aviation Industry Press, 2011: 98 (刘庆瑔. 航空发动机叶片制造技术及失效分析. 北京: 航空工业出版社, 2011: 98)
[8] Tao C H. Faiture Analysis and Prevention for Rotor in Aero-Engine. Beijing: National Defense Industry Press, 2008: 1 (陶春虎. 航空发动机转动部件的失效与预防. 北京: 国防工业出版社, 2008: 1)
[9] Zhao W X, Li Y, Fan Y W, Zheng Y R. J Mater Eng, 2012; (8): 39 (赵文侠, 李 莹, 范映伟, 郑运荣. 材料工程, 2012; (8): 39)
[10] Tawancy H M, Al-Hdhrami L. Eng Fail Anal, 2008; 15: 1027
[11] Cai Y L,Zheng Y R. Metallographic Research of Superalloys. Beijing: National Defense Industry Press, 1986: 228 (蔡玉林,郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 228)
[12] Sun S Z, Li S Y, Zheng Y R. J Mater Eng, 1990; (3): 45 (孙淑珍, 李淑媛, 郑运荣. 材料工程, 1990; (3): 45)
[13] Li Y, Hou X Q, Tao C H, Jiang T. J Iron Steel Res, 2011; 23(suppl 2): 452 (李 莹, 候学勤, 陶春虎, 姜 涛. 钢铁研究学报, 2011; 23(增刊2): 452)
[14] Liu D L, Zhang W F, Li C G, Miao H B. Heat Treat Met, 2007; 32(1): 71 (刘德林, 张卫方, 李春光, 缪宏博. 金属热处理, 2007; 32(1): 71)
[15] Gao Y. New Manufacture Technologies, Metallograph Atlas and Manual for Data of Superalloys. Beijing: Science and Technology of China Press, 2006: 57 (高 原. 高温合金生产新工艺新技术与金相图谱及常用数据速用速查手册. 北京: 中国科技文化出版社, 2006: 57)
[16] Tong J Y, Ding X F, Wang M L, Zheng Y R, Yagi K, Feng Q. Mater Sci Eng, 2014; A618: 605
[17] Xu Y L, Jin Q M, Xiao X S, Cao X L, Jia G Q, Zhu Y M, Yin H J. Mater Sci Eng, 2011; A528: 4600
[18] Zhao Y, Gai X Y, Song G H. Phys Test Chem Anal: Phys Test, 2007; 43A: 498 (赵 越, 盖秀颖, 宋贵宏. 理化检验: 物理分册, 2007; 43A: 498)
[19] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol: Edward Arnold Ltd, 1974: 33
[20] Richards E. J Inst Met, 1968; 96: 365
[21] Carter T J. Eng Fail Anal, 2005; 12: 237
[22] Zhang L H. Heat Treat, 2003; 18(3): 26 (张立红. 热处理, 2003; 18(3): 26)
[23] Ge T T. Master Thesis, University of Science and Technology Beijing, 2006 (葛婷婷. 北京科技大学硕士学位论文, 2006)
[24] Voice W E, Faulkner R G. Met Mater Trans, 1985; 16A: 511
[25] Furillo F T, Davidson J M, Tien J K, Jackman L A. Mater Sci Eng, 1979; A39: 267
[26] Iwashita C H. PhD Dissertation, Lehigh University, Bethlehem, 1998
[27] Bhowal P, Wright E, Raymond E. Met Trans, 1990; 21A: 1709
[28] Locq D, Caron P, Raujol S, Pettinari-Sturmel F, Coujou A, Clement N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Pennsylvania: TMS, 2004: 179
[29] Sun K J, Gai X Y, Li C X. Phys Test Chem Anal: Phys Test, 2009; 7A: 393 (孙克君, 盖秀颖, 李晨希. 理化检验: 物理分册, 2009; 7A: 393)
[30] Osada T, Nagashima N, Gu Y F, Yuan Y, Yokokawa T, Harada H. Scr Mater, 2011; 64: 892
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.