Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 120-128    DOI: 10.11900/0412.1961.2015.00264
  本期目录 | 过刊浏览 |
Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*
陈守东1,刘相华1(),刘立忠2,宋孟1
1 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2 东北大学材料与冶金学院, 沈阳 110819
CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING
Shoudong CHEN1,Xianghua LIU1(),Lizhong LIU2,Meng SONG1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
Shoudong CHEN, Xianghua LIU, Lizhong LIU, Meng SONG. CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING[J]. Acta Metall Sin, 2016, 52(1): 120-128.

全文: PDF(4487 KB)   HTML
摘要: 

为了定量描述晶粒取向和结构对极薄带轧制微观塑性变形非均匀性的影响, 采用晶体塑性有限元方法(CPFEM)和Voronoi图的多晶模型, 考虑试样尺寸、晶粒尺寸、晶体取向及其分布, 模拟了不同厚度Cu极薄带在相同压下率条件下的滑移与变形行为, 得到了介观尺度上Cu极薄带的微观应力-应变和启动滑移系分布. 模拟获得的应力-应变曲线和实验测得的曲线基本一致, 验证了晶体塑性有限元模型的准确性. 通过对40%压下率Cu极薄带轧制变形的研究表明, 无论是在晶粒内部还是在晶粒间, 材料内部的变形都非常不均匀, 这种不均匀性主要是由初始晶粒取向和结构不同、近邻晶粒取向差以及变形时滑移系的运动特性和晶粒旋转不同引起的. 滑移系首先在自由表面和晶界处被激活, 而后引起晶粒内部滑移系的启动与运动.

关键词 极薄带轧制晶体塑性有限元晶粒各向异性滑移系启动    
Abstract

When the part size is scaled down to micro-scale, the material consists of only a few grains and the material properties and deformation behaviors are quite different from the conventional ones in macro-scale. In micro-scaled plastic deformation process such as ultra-thin strip rolling, material thickness effect is difficult to reveal and investigate using conventional material models. The distributions of the stress, strain and active slip systems, and the slip and deformation behavior in rolled pure ultra-thin copper strip with the same reduction were simulated by the crystal plasticity finite element method (CPFEM) and Voronoi polycrystalline model with respect to specimen dimension, grain size, grain orientation and its distribution to evaluate quantitatively the influence of grain orientation and structure on inhomogeneous deformation behavior of ultra-thin strip rolling on a mesoscale. A polycrystalline aggregate model is generated and a crystal plasticity based an implicit finite element model is developed for each grain and the specimen as a whole. The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function (ODF). Voronoi tessellation has been applied to describe the polycrystalline aggregation. The accuracy of the developed CPFEM model is verified by the fact that the simulated stress-strain curves agree well with the experimental results. The deformation behaviors, including inhomogeneous material flow, and slip system activity with the increase of thickness size for the constant size of grain, are studied. It is revealed that when the ultra-thin strips are composed of only a few grains through thickness direction, the grains with different size, shapes and orientations are unevenly distributed in the ultra-thin strip and each grain plays a significant role in micro-scale plastic deformation, slip system activity and leads to inhomogeneous deformation. The simulation result reveals that the deformation behavior in the polycrystalline aggregates is inhomogeneous not only in intracrystalline but also in intergranule regions by simulation of deformation behavior of pure ultra-thin copper strip rolling with 40% rolling reduction. This can be attributed to the different initial grain orientations and structures, the misorientation of neighboring grains, and the different properties of active slip systems and lattice rotation. Activation often initially occurs at free surface and near the boundary adjacent to grains, and then the slip develops in interior grain. The results from the proposed modeling methodologies provide a basic for understanding and further exploring of micro-scaled plastic deformation behavior in ultra-thin strip rolling process.

Key wordsultra-thin strip rolling    crystal plasticity finite element    grain heterogeneity    slip system activation
收稿日期: 2015-05-17     
基金资助:国家自然科学基金项目51374069 和U1460107 资助
Plane Direction Slip system
(111) [011] a1
[101] a2
[110] a3
(111) [101] b1
[110] b2
[011] b3
(111) [011] c1
[110] c2
[101] c3
(111) [011] d1
[101] d2
[110] d3
表1  fcc金属的滑移系
图1  拉伸试样尺寸
图2  晶体塑性有限元模拟和实验测得的Cu极薄带应力-应变曲线
图3  不同厚度Cu极薄带初始计算模型和厚度t=200 μm的模型轧制后的微观结构
图4  2种厚度Cu极薄带经40%压下率变形后的剪切应力分布
图5  2种厚度Cu极薄带经40%压下率变形后的对数应变(lne)分布
图6  图4a和5a中D, K, L位置处激活滑移系的剪切应变率随时间的变化
图7  图4b和5b中G, N, P位置处激活滑移系的剪切应变率随时间的变化
图8  厚度为200 μm的Cu极薄带经40%压下率变形后3个滑移系的剪切应变率
图9  厚度为400 μm Cu极薄带经40%压下率变形后3个滑移系的剪切应变率
图10  厚度为t=200 μm的Cu 极薄带经40%压下率轧制变形前后晶粒G64和G63的{111}极图
[1] Groeber M, Ghosh S, Uchic M D, Dimiduk D M. JOM, 2007; 59(9): 32
[2] Engel U, Eckstein R. J Mater Process Technol, 2002; 125-126: 35
[3] Pierard O, Lorca J, Segurado J, Doghri I. Int J Plasticity, 2007; 23: 1041
[4] Si L Y, Lu C, Huynh N N, Tieu A K, Liu X H. J Mater Process Technol, 2008; 201(1-3): 79
[5] Taylor G I. J Inst Met, 1938; 62: 307
[6] Parks D M, Ahzi S. J Mech Phys Solids, 1990; 38: 701
[7] Honneff H, Mecking H. Textures Mater, 1978; 1: 265
[8] Molinari A, Canova G R, Ahzi S. Acta Metall, 1987; 35: 2983
[9] Hill R, Rice J R. J Mech Phys Solids, 1972; 20: 401
[10] Deng G Y, Lu C, Su L H, Liu X H, Tieu A K. Mater Sci Eng, 2012; A534: 68
[11] Deng G Y, Tieu A K, Si L Y, Su L H, Lu C, Wang H, Liu M, Zhu H T, Liu X H. Comput Mater Sci, 2014; 81: 2
[12] Tamimi S, Correia P J, Lopes A B, Ahzi S, Barlat F, Gracio J J. Mater Sci Eng, 2014; A603: 150
[13] Klusemann B, Svendsen B, Vehoff H. Comp Mater Sci, 2012; 52: 25
[14] Li L, Shen L M, Proust G, Moy Charles K S, Ranzi G. Mater Sci Eng, 2013; A579: 41
[15] Zhang X, Aifantis K E, Ngan Alfonso H W. Mater Sci Eng, 2014; A591: 38
[16] Liu M, Tieu A K, Lu C, Zhu H T, Deng G Y. Comput Mater Sci, 2014; 81: 30
[17] Turner T J, Shade P A, Schuren J C, Groeber M. Modell Simul Mater Sci Eng, 2013; 21: 015002
[18] Prakash A, Weygand S M, Riedel H. Comput Mater Sci, 2009; 45: 744
[19] Kanjarla A K, Van Houtte P, Delannay L. Int J Plast, 2010; 26: 1220
[20] Keller C, Hug E, Habraken A M, Duchene L. Int J Plast, 2012; 29: 155
[21] Grogan J A, Leen S B, McHugh P E. J Mech Behav Biomed Mater, 2013; 20: 61
[22] Chen Y, Kraft O, Walter M. Acta Mater, 2015; 87: 78
[23] Fleurier G, Hug E, Martinez M, Dubos P A, Keller C. Philos Mag Lett, 2015; 95: 122
[24] Xu Z T, Peng L F, Fu M W, Lai X M. Int J Plast, 2015; 68: 34
[25] Peirce D, Asaro R J, Needleman A. Acta Metall, 1983; 31: 1951
[26] Asaro R J, Needleman A. Acta Metall, 1985; 33: 923
[27] Bassani J L, Wu T Y. Proc Soc Lond, 1991; 435A: 21
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 郑成武; 兰勇军; 肖纳敏; 李殿中; 李依依 . 热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J]. 金属学报, 2006, 42(5): 474-480 .
[3] 肖纳敏; 岳珠峰; 兰勇军; 佟铭明; 李殿中 . 介观尺度上热变形奥氏体储存能演化的计算机模拟[J]. 金属学报, 2005, 41(5): 496-502 .