Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 33-40    DOI: 10.11900/0412.1961.2015.00257
  本期目录 | 过刊浏览 |
17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究*
方智1,李静媛1(),陈雨来2,江来珠3,杜伟3
1 北京科技大学材料科学与工程学院, 北京 100083
2 北京科技大学冶金工程研究院, 北京 100083
3 宝山钢铁股份有限公司宝钢研究院, 上海 200431
RESEARCH ON RIDGING OF 17%Cr ULTRA PURE FERRITIC STAINLESS STEEL AFTER ENLONGATED ALONG VARIOUS DIRECTIONS
Zhi FANG1,Jingyuan LI1(),Yulai CHEN2,Laizhu JIANG3,Wei DU3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
3 Baosteel Research Institute, Baoshan Iron and Steel Co. Ltd., Shanghai 200431, China
引用本文:

方智,李静媛,陈雨来,江来珠,杜伟. 17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究*[J]. 金属学报, 2016, 52(1): 33-40.
Zhi FANG, Jingyuan LI, Yulai CHEN, Laizhu JIANG, Wei DU. RESEARCH ON RIDGING OF 17%Cr ULTRA PURE FERRITIC STAINLESS STEEL AFTER ENLONGATED ALONG VARIOUS DIRECTIONS[J]. Acta Metall Sin, 2016, 52(1): 33-40.

全文: PDF(9316 KB)   HTML
摘要: 

采用激光共焦显微镜、XRD和EBSD技术, 研究了17%Cr超纯铁素体不锈钢退火板材沿3个不同方向拉伸变形后表面起皱与晶粒取向变化之间的关系, 并探索了17%Cr超纯铁素体不锈钢的拉伸起皱机制. 结果表明, 17%Cr超纯铁素体不锈钢退火板材沿着与轧向呈0° (轧制方向, RD), 45°和90° (横向, TD) 3个不同方向拉伸后, 表面条纹状起皱方向均与原始轧向平行, 并且随拉伸角度增大, 表面起皱逐步减轻. 在拉伸过程, 均发生<110>取向向拉伸方向(TA, 拉伸变形方向)转动. 但沿TD拉伸时未造成晶面转动, 而沿RD拉伸则转动形成{112}和{221}面取向. 17%Cr超纯铁素体不锈钢起皱与<110>//TA取向无关, 而是由沿原RD分布的晶粒簇内的晶面转动造成的, 并且晶粒簇内的晶向转动对起皱的影响极小.

关键词 超纯铁素体不锈钢晶体转动起皱织构    
Abstract

Improved mechanical and chemistry properties of ferritic stainless steel (FSS), such as stamping formability and corrosion resistance, have been attained by decreasing the contents of C and N. Therefore, the ultra pure ferritic stainless steel with low content of C and N is a good candidate to replace the conventional Cr-Ni austenitic stainless steel for specific applications to save the higher price of Ni. As compared to conventional austenitic stainless steel, however, the ferritic stainless steel is susceptible to develop narrow ridges on the sheet surface during forming operations. The ridges, which can extend over the whole sheet length and have a depth of 20~50 μm, destroy the smooth appearance and surface shine of the product and thereby reduce the quality of the formed work pieces. This is one of the most serious problems of ferritic stainless steel sheets. Hence, the improvement for resistance of ridging is desired for further wide applications of ferritic stainless steel. In this work, laser scanning confocal microscopy, XRD and EBSD were used to observe the corelation between surface ridging and the evolution of grain orientation of 17%Cr ultra pure ferritic stainless steel after elongated along three different directions. Furthermore, the mechanism of tensile ridging of ferritic stainless steel was discussed. The results show that the ridging direction always parallels to the original rolling direction when the 17%Cr ultra pure ferritic stainless steel is enlongated along 0° (rolling direction, RD), 45° and 90° (transverse direction, TD) with the rolling directions, respectively. However, the height of ridging gradually decreases with the increase of the angle betweeen the rolling direction. Meanwhile, tensile texture of <110>//TA (tensile axis) gradually forms after enlongated along three different directions. The most important phenomenon is that the crystal plane almost does not rotate when enlongated along TD, while {112} and {221} orientations form when enlongated along RD. Thus it can be deduced that there is no relationship between ridging and <110>//TA orientation in 17%Cr ultra pure ferritic stainless steel. Moreover, the rotation of crystal direction in rolling plane has little effect on the ridging. However, the formation of ridging can be attributed to the rotation of crystal plane in rolling plane with cluster distribution.

Key wordsultra pure ferritic stainless steel    crystal rotation    ridging    texture
收稿日期: 2015-05-12     
基金资助:国家自然科学基金项目51174026 和国家科技支撑计划项目2012BAE04B02 资助
图1  沿0° (轧制方向, RD), 45°和90° (横向, TD)拉伸25%后17%Cr超纯铁素体不锈钢表面起皱示意图和表面形貌
图2  17%Cr超纯铁素体不锈钢沿3个方向分别拉伸25%后的表面轮廓曲线
Direction Ridging / mm Ra / mm Rt / mm
Peak Valley
RD 23.01 -15.53 6.82 38.54
45° 7.58 -5.27 2.44 12.85
TD 4.28 -4.77 1.20 9.05
表1  17%Cr超纯铁素体不锈钢沿3个方向拉伸25%后表面起皱参数
图3  退火态及沿RD和TD拉伸25%后17%Cr超纯铁素体不锈钢的取向分布函数(ODF)图
图4  17%Cr超纯铁素体不锈钢&lt;110&gt;取向晶粒分布图
图5  17%Cr超纯铁素体不锈钢晶粒取向反极图(IPF)
图6  晶向、晶面转动及其与起皱关系的示意图
  
[1] Defilippi J D, Chao H C. Metall Mater Trans, 1971; 2B: 3209
[2] Chao H C. Trans ASM, 1967; 60: 37
[3] Wright R N. Metall Trans, 1972; 3: 83
[4] Bethke K, Lücke K, H?lscher M. Mater Sci Forum, 1994; 157: 1137
[5] Brochu M, Yokota T, Satoh S. ISIJ Int, 1997; 9: 872
[6] Shin H J, An J K, Park S H, Lee D N. Acta Mater, 2003; 51: 4693
[7] Takechi H, Kato H, Sunamit T, Nakayama T. Trans Jpn Inst Met, 1967; 8: 233
[8] Wu P D, Lloyd D J, Huang Y. Mater Sci Eng, 2006; A427: 241
[9] Engler O, Huh M Y, Tome C N. Metall Mater Trans, 2005; 36A: 3127
[10] Wu P D, Jin H, Shi Y, Lloyd D J. Mater Sci Eng, 2006; A423: 300
[11] Sinclair C W. Metall Mater Trans, 2007; 38A: 2435
[12] Lefebvre G, Sinclair C W, Lebensohn R A, Mithieux J D. Modell Simul Mater Sci Eng, 2012; 20: 024008
[13] Knutsen R D, Wittridge N J. Mater Sci Technol, 2002; 18: 1279
[14] Gao F, Liu Z Y, Zhang W N, Liu H T, Sun G T, Wang G D. Acta Metall Sin, 2012; 10: 1166
[14] (高 飞, 刘振宇, 张维娜, 刘海涛, 孙广庭, 王国栋. 金属学报, 2012; 10: 1166)
[15] Fang X Y, Wang W G, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404
[15] (方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2010; 46: 404)
[16] Cui G B, Ju X H, Ren D D, Jia H P, Wang Z Y. J Chin Electron Microsc Soc, 2013; 32: 224
[16] (崔桂彬, 鞠新华, 任丹丹, 贾惠平, 王泽阳. 电子显微学报, 2013; 32: 224)
[17] Balke P, De-Hosson J Th M. Scr Mater, 2001; 44: 461
[18] Allain-Bonasso N, Wagner F, Berbenni S, Field D P. Mater Sci Eng, 2012; A548: 56
[19] Yazawa Y, Muraki M, Kato Y, Furukimi O. ISIJ Int, 2003; 43: 1647
[20] Shan Y T, Luo X H, Hu X Q, Liu S. J Mater Sci Technol, 2011; 27: 352
[21] Liu J, Luo X H, Hu X Q, Liu S. Acta Metall Sin, 2011; 47: 688
[21] (刘 静, 罗兴宏, 胡小强, 刘 实. 金属学报, 2011; 47: 688)
[22] Hamada J, Matsumoto Y, Fudanoki F, Maeda S. ISIJ Int, 2003; 12: 1989
[23] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1992; 12: 1319
[24] Hub M Y, Lee J H, Park S H, Engler O, Raabe D. Steel Res Int,2005; 76: 797
[25] Jung I, Chae D, De-Cooman B C. Steel Res Int, 2010; 12: 1089
[26] Singh C D. Textures Microstr, 1996; 27: 445
[27] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100
[28] Schouwenaars R, Houtte P V, Aernoudt E, Standaert C, Dilewijns J. ISIJ Int, 1994; 34: 366
[29] Luo J J, Hu W Y, Chen J C, Wang J A. J Chin Electron Microsc Soc, 2012; 31: 1
[29] (骆靓鉴, 胡汪洋, 陈纪昌, 王均安. 电子显微学报, 2012; 31: 1)
[30] Scheriau S, Pippan R. Mater Sci Eng, 2008; A493: 48
[31] Zheng W W, Yang W Y, Sun Z Q. Acta Metall Sin, 2000; 36: 1161
[31] (郑为为, 杨王玥, 孙祖庆. 金属学报, 2000; 36: 1161)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[7] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[11] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[13] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[14] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[15] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.