Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1441-1448    DOI: 10.11900/0412.1961.2015.00215
  本期目录 | 过刊浏览 |
AZ31镁合金在平面应变压缩过程中的孪生行为研究*
汪炳叔1(),邓丽萍1,CHAPUIS Adrien2,郭宁3,李强1
1 福州大学材料科学与工程学院, 福州 350108
2 重庆大学材料科学与工程学院, 重庆 400044
3 西南大学材料与能源学部材料工程系, 重庆 400715
STUDY OF TWINNING BEHAVIOR OF AZ31 Mg ALLOY DURING PLANE STRAIN COMPRESSION
Bingshu WANG1(),Liping DENG1,Adrien CHAPUIS2,Ning GUO3,Qiang LI1
1 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044
3 Department of Materials Engineering, Faculty of Materials Science and Energy, Southwest University, Chongqing 400715
引用本文:

汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
Bingshu WANG, Liping DENG, Adrien CHAPUIS, Ning GUO, Qiang LI. STUDY OF TWINNING BEHAVIOR OF AZ31 Mg ALLOY DURING PLANE STRAIN COMPRESSION[J]. Acta Metall Sin, 2015, 51(12): 1441-1448.

全文: PDF(1164 KB)   HTML
摘要: 

采用EBSD技术研究了AZ31镁合金在平面应变压缩过程中的孪生行为. 结果表明, 当压缩方向为TD, 约束方向为RD时, 孪生类型主要以{101-2}拉伸孪晶为主, 孪生变体的选择主要由沿TD的孪生Schmid因子(m)决定, 并受RD的影响. 可用孪生应变张量来解释不同类型孪生晶粒的差异. 对于晶粒内部只发生1个{101-2}孪生变体的情况, 孪生变体在约束方向上的平均孪生应变张量会使得样品伸长; 对于晶粒内部含有2个及以上变体的情况, 孪生m较大的变体在约束方向上的平均孪生应变张量使得样品伸长, 而m较小的变体使得样品在约束方向缩短, 在平面应变压缩变形过程中, 不同类型的孪生变体相互协调变形.

关键词 AZ31镁合金平面应变EBSD孪生变体    
Abstract

Mg alloy has hexagonal structure and exhibits poor workability at room temperature, which is attributed to the difficulty in activating a sufficient number of independent slips to accommodate the deformation. Twinning plays an important role in plastic deformation of Mg alloys during low and medium temperature to accommodate the imposed strain, especially the strain along the c-axis. Therefore, the twinning behavior of AZ31 Mg alloy during plane strain compression at room temperature was investigated with EBSD in this work. Rectangular specimens with a dimension of 10 mm in length, 9 mm in width and 7 mm in thickness were cut from a hot rolled plate. The results show that {101-2} twinning is dominant when the compression and constraint direction are parallel to transverse direction (TD) and rolling direction (RD) of the plate, respectively. The twinning variant selection mechanism is dominated by the Schmid factor (m) along compression direction, and also related to the constraint direction. The differences of twinning behavior can be interpreted by the twinning strain tensor. For the case when single twinning variant occurs within a grain, the average twinning strain tensor of twinning variant in constraint direction will result in spreading; while for the case there are two or more twinning variants taking place within a grain, the average twinning strain tensor of the variant with higher m will induce spreading in the constraint direction, and that with lower m results in size reducing in the constraint direction. During plane strain compression, different twinning variants coordinate with each other, twinning won't be suppressed until the micro-strain in the constraint direction reaches 0.

Key wordsAZ31 Mg alloy    plane strain    EBSD    twin variant
    
基金资助:* 国家自然科学基金资助项目51301040
图1  变形前AZ31镁合金板材的微观组织、织构及压缩试样取样示意图
图2  样品在室温下平面应变压缩8%后的EBSD取向成像图和极图
图3  变形后样品的取向差及旋转轴分布
图4  第I和第Ⅱ类晶粒内部未发生孪生的晶粒和发生孪生的晶粒取向分析
图5  {101-2}孪生Schmid因子分析
图6  第I类晶粒沿不同方向的孪生m分析
图7  第Ⅱ类晶粒沿不同方向的孪生m分析
图8  第I类晶粒孪生应变张量分析
图9  第Ⅱ类晶粒孪生应变张量分析
[1] Liu Q. Acta Metall Sin, 2010; 56: 1458
[1] (刘 庆. 金属学报, 2010; 46: 1458)
[2] Koike J. Metall Mater Trans, 2005; 36A: 1689
[3] Wan G, Wu B L, Zhang Y D, Sha G Y, Esling C. Mater Sci Eng, 2010; A527: 2915
[4] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899
[5] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897
[6] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303
[6] (杨续跃, 张 雷. 金属学报, 2009; 45: 1303)
[7] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881
[8] Jonas J J, Mu S, Al-Samman T, Gottstein G, Jiang L, Martin T. Acta Mater, 2011; 59: 2046
[9] Luo J R, Godfrey A, Liu W, Liu Q. Acta Mater, 2012; 60: 1986
[10] Ma Q, El Kadiri H, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813
[11] Hong S-G, Park S H, Lee C S. Scr Mater, 2011; 64: 145
[12] Martin é, Capolungo L, Jiang L, Jonas J J. Acta Mater, 2010; 58: 3970
[13] Hong S G, Park S H, Lee C S. Acta Mater, 2010; 58: 5873
[14] Godet S, Jiang L, Luo A A, Jonas J J. Scr Mater, 2006; 55: 1055
[15] Wang B S, Xin R L, Huang G J, Liu Q. Scr Mater, 2012; 66: 239
[16] Pei Y. Master Thesis, Tsinghua University, Beijing, 2009
[16] (裴 颖. 清华大学硕士学位论文, 北京, 2009)
[17] Mu S, Jonas J J, Gottstein G. Acta Mater, 2012; 60: 2043
[18] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5
[19] Jiang J, Godfrey A, Liu W, Liu Q. Scr Mater, 2008; 58: 122
[20] Al-Samman T, Ahmad B, Gottstein G. Mater Sci Forum, 2007; 550: 229
[21] Chapuis A, Driver J H. Acta Mater, 2011; 59: 1986
[22] Zhang L, Liu C G, Wang H Y, Nan X L, Wu Z Q, Jiang Q C. Mater Sci Eng, 2013; A578: 362
[23] Maurice C, Piot D, Klocker H, Driver J H. Metall Mater Trans, 2005; 36A: 1039
[24] Chapuis A, Wang B S, Liu Q. Mater Sci Eng, 2014; A597: 349
[25] Jiang J, Godfrey A, Liu Q. Mater Sci Technol, 2005; 21: 1417
[26] Wang B, Deng L, Guo N, Xu Z, Li Q. Mater Charact, 2014; 98: 180
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[4] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[5] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[6] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[7] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[8] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[9] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[10] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[11] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[12] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[13] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[14] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[15] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.