Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 93-99    DOI: 10.11900/0412.1961.2015.00204
  本期目录 | 过刊浏览 |
高压环境下CMT焊接电弧行为及焊缝性能*
黄继强1(),薛龙1,黄军芬1,邹勇1,牛虎理2,唐德渝2
1 北京石油化工学院光机电装备技术北京市重点实验室, 北京 102617
2 中国石油集团工程技术研究院, 天津 300451
ARC BEHAVIOR AND JOINTS PERFORMANCE OF CMT WELDING PROCESS IN HYPERBARIC ATMOSPHERE
Jiqiang HUANG1(),Long XUE1,Junfen HUANG1,Yong ZOU1,Huli NIU2,Deyu TANG2
1 Opto-Mechatronic Equipment Technology Beijing Area Major Laboratory, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Research Institute of Engineering Technology, China National Petroleum Corporation, Tianjin 300451, China
引用本文:

黄继强,薛龙,黄军芬,邹勇,牛虎理,唐德渝. 高压环境下CMT焊接电弧行为及焊缝性能*[J]. 金属学报, 2016, 52(1): 93-99.
Jiqiang HUANG, Long XUE, Junfen HUANG, Yong ZOU, Huli NIU, Deyu TANG. ARC BEHAVIOR AND JOINTS PERFORMANCE OF CMT WELDING PROCESS IN HYPERBARIC ATMOSPHERE[J]. Acta Metall Sin, 2016, 52(1): 93-99.

全文: PDF(6426 KB)   HTML
摘要: 

采用CMT焊接方法, 在模拟水下高压环境的实验系统中分别进行了常压环境下(0.1 MPa)和环境压力为0.5 MPa下的焊接实验, 实验中采用API X65管线钢接头为研究对象. 焊接过程中采用高速摄像观察焊接电弧行为, 2种环境压力下焊接过程均稳定, 但与常压环境相比较, 0.5 MPa环境压力下的CMT焊接电弧产生收缩, 熔滴过渡频次降低. 焊后对焊缝分别取样进行力学性能检测和金相组织观察, 高压环境下焊缝及热影响区的金相组织因为环境冷却作用增强而出现上贝氏体组织, 拉伸性能没有明显变化, 低温冲击韧性下降, 但测试数据也远高于相关标准要求. 结果表明, CMT焊接方法改善了高压焊接过程的稳定性, 满足水下高压干式焊接作业要求.

关键词 高压干式焊接冷金属过渡(CMT)焊接电弧显微组织水下焊接    
Abstract

Underwater hyperbaric dry welding method is one of the key technology for emergency repair of underwater pipeline leakage. Since the ambient pressure grows with water depth for application of the underwater dry hyperbaric welding method, the normal GMAW welding process tends to be unstable with the increase of the ambient pressure, which leads to the decline in the quality of welding. The cold metal transfer (CMT) welding method adopts a push-pull wire feeding mode and it has adaptive ability to control droplet transfer. In order to improve the welding quality under the hyperbaric environment, the experiments using the CMT welding method were conducted in atmospheric pressure (0.1 MPa) and 0.5 MPa environmental pressures respectively with a test system simulating the underwater hyperbaric environment. API X65 pipes were used as the base metal for welding experiments. A high-speed video camera was used to monitor the behavior of the welding arc. The welding processes at both ambient pressures were found to be stable. However, compared with the atmospheric environment, the CMT welding arc contracted at the ambient pressure of 0.5 MPa, and the droplet transfer frequency was reduced a little. Mechanical performance tests and microstructure analysis of the welds were carried out after welding. While welding in the hyperbaric environment, the upper bainite structure emerged in the microstructure of the seam and the heat-affected zone (HAZ) because of the enhanced environmental cooling effect. The tensile properties of the welds were not changed significantly. Although the low temperature impact toughness decreased, the test data were higher than the relevant limitations of standard. The experimental results show that the stability of the welding process is improved by applying the CMT welding method in the hyperbaric environment. It was verified that the CMT welding method can meet the requirements of underwater hyperbaric welding.

Key wordshyperbaric dry welding    cold metal transfer (CMT)    welding arc    microstructure    underwater welding
收稿日期: 2015-04-08     
基金资助:国家自然科学基金项目51275051 和北京市教育委员会提升计划项目TJSHG201510017023 资助
图1  高压焊接实验装置示意图
Material C Si Mn P S Cu Ni Cr Ti B Fe
Base metal 0.07 0.28 1.19 0.006 0.003 0.10 0.04 0.25 - - Bal.
Welding wire 0.08 0.08 1.76 0.014 0.004 - - - 0.09 0.004 Bal.
表1  高压干式焊接实验中采用的母材及焊丝的化学成分
Material Yield strength / MPa Tensile strength / MPa Extensibility / % Charpy impact energy / J
Base metal 515 615 44 135
Welding wire 500 610 25 128
表2  高压干式焊接实验中采用的母材及焊丝的性能
Pressure Zone Current Voltage Swing amplitude Welding speed Flow rate of shielding gas
MPa A V mm (cmmin-1) (Lmin-1)
0.1 Root pass 135 16.0 2~3 22 18~22
Filling bead 155 16.5 4~6 12~15 18~22
Cover pass 180 19.1 8~9 12~15 18~22
0.5 Root pass 135 17.5 2~3 22 18~22
Filling bead 155 18.5 4~6 12~15 18~22
Cover pass 185 20.5 8~9 12~15 18~22
表3  不同环境压力下的CMT焊接实验参数
图2  在常压(0.1 MPa)和0.5 MPa环境压力下CMT焊接过程高速摄像照片
图3  在常压(0.1 MPa)和0.5 MPa环境压力下获得的管管对接接头
图4  常压(0.1 MPa)环境下焊缝的OM像
图5  0.5 MPa环境压力下焊缝的OM像
Pressure / MPa Tensile strength / MPa Extensibility / % Broken area Limitation of standard / MPa
0.1 565 14 Weld 531
562 12 Weld 531
0.5 545 11 Weld 531
570 14 Weld 531
表4  在常压下(0.1 MPa)和0.5 MPa环境压力下焊缝的横向拉伸测试数据
Pressure Position of Impact Least impact Mean impact Limitation of standard
MPa Charpy notch energy energy energy Least impact Mean impact
J J J energy / J energy / J
0.1 Weld 144, 133, 137 133 138 27 34
HAZ 107, 127, 84 84 106 27 34
0.5 Weld 57, 47, 78 47 61 27 34
HAZ 71, 155, 67 67 98 27 34
表5  在常压下(0.1 MPa)和0.5 MPa环境压力下获得的焊缝Charpy冲击功测试数据(-20 ℃)
[1] Jiang L P, Wang Z H, Jiao X D, Zhou C F, Fang X M, Ma H X. Trans China Weld Inst, 2007; 28(6): 1
[1] (蒋力培, 王中辉, 焦向东, 周灿丰, 房晓明, 马洪新. 焊接学报, 2007; 28(6): 1)
[2] Shi Y W,Zhang X P,Lei Y P. Welding Technology in Special Conditions. Beijing: China Machine Press, 2000: 1
[2] (史耀武,张新平,雷永平. 严酷条件下的焊接技术. 北京: 机械工业出版社, 2000: 1)
[3] Song B T. Underwater Welding and Cutting. Beijing: China Machine Press, 1989: 5
[3] (宋宝天. 水下焊接及切割. 北京: 机械工业出版社, 1989: 5)
[4] Woodward N J. Welding J, 2006; 85(10): 35
[5] Marino R, Blackman S A, Woodward N J. Pipeline World, 2004; 25(6): 11
[6] Suga Y. Welding under Extreme Conditions. Oxford: Pergamon Press, 1989: 207
[7] Richardson I M, Woodward N J, Billingham J. In: Jin S C, Matsui T, Chen J W, Kyozuka Y eds., Proc of 12th Int Conf on Offshore and Polar Arctic Engineering, Kitatyushu: International Society of Offshore and Polar Arctic Engineering, 2002: 295
[8] Dos Santos J F, Manzenrieder H, Cui H, Recoschewitz J. In: Jin S C ed., Proc of 6th Int Conf on Offshore and Polar Arctic Engineering, San Francisco: International Society of Offshore and Polar Arctic Engineering, 1992: 163
[9] Mallieswaran A, Pugazhendhi A, Azhagarasan S. J Adv Technol Eng, 2012; 1(1): 71
[10] Zhao B, Wu C S, Jia C B, Yuan X. Acta Metall Sin, 2013; 49: 797
[10] (赵 博, 武传松, 贾传宝, 袁 新. 金属学报, 2013; 49: 797)
[11] Odd M A, Hans F, Ansgar H. Weld J, 2006; 85(6): 52
[12] Xue L, Wang Z H, Zhou C F, Jiao X D. Trans China Weld Inst, 2006; 27(12): 17
[12] (薛 龙, 王中辉, 周灿丰, 焦向东. 焊接学报, 2006; 27(12): 17)
[13] Zhou C F, Jiao X D, Xue L, Chen J Q, Fang X M, Wang W Y. Trans China Weld Inst, 2007; 28(2): 5
[13] (周灿丰, 焦向东, 薛 龙, 陈家庆, 房晓明, 王维越. 焊接学报, 2007; 28(2): 5)
[14] Hart P, Richardson I M, Nixon J H. Welding World, 2001; 45(11/12): 29
[15] Hart P. Welding Res Abroad, 2001; 49(3): 29
[16] Akselsen O M, Fostervoll H, Carl H A. In: Jin S C ed., Proc of 18th Int Conf on Offshore and Polar Arctic Engineering, Vancouver: International Society of Offshore and Polar Arctic Engineering, 2008: 246
[17] Akselsen O M, Fostervoll H, Ahlen C H. Int J Offshore Polar Eng, 2010; 20: 110
[18] Azar A S, Woodward N, Fostervoll H, Akselsen O M. J Mater Process Technol, 2012; 21(2): 211
[19] Huang J Q, Xue L, Lu T, Niu H L, Tang D Y, Jiang L P. China Welding, 2012; 21(4): 26
[20] Woodward N J. Int J Offshore Polar Eng, 2014; 24: 206
[21] Paidar M, Khodabandeh A, Najafi H, Alireza S R. Int J Adv Manufacture Technol, 2015; 80(1): 183
[22] Yin S Y. Process and Application of Gas Shielded Arc Welding. 2nd Ed., Beijing: China Machine Press, 2012: 441
[22] (殷树言. 气体保护焊工艺基础及应用, 第2版. 北京: 机械工业出版社, 2012: 441)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.