Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 113-119    DOI: 10.11900/0412.1961.2015.00203
  本期目录 | 过刊浏览 |
Al/镀锌钢板焊接界面区Fe-Al-Zn金属间化合物形成的热力学分析*
陈满骄1,黄健康1(),何翠翠2,石玗1,樊丁1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 廊坊燕京职业技术学院机电工程系, 廊坊 065200
THERMODYNAMIC ANALYSIS OF THE FORMATION OF Fe-Al-Zn INTERMETALLIC COMPOUNDS IN Al/GALVANIZED STEEL INTERFACE
Manjiao CHEN1,Jiankang HUANG1(),Cuicui HE2,Yu SHI1,Ding FAN1
1 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Department of Mechanical and Electrical Engineering, Vocational Technical Institute of Langfang Yanjing, Langfang 065200, China
引用本文:

陈满骄,黄健康,何翠翠,石玗,樊丁. Al/镀锌钢板焊接界面区Fe-Al-Zn金属间化合物形成的热力学分析*[J]. 金属学报, 2016, 52(1): 113-119.
Manjiao CHEN, Jiankang HUANG, Cuicui HE, Yu SHI, Ding FAN. THERMODYNAMIC ANALYSIS OF THE FORMATION OF Fe-Al-Zn INTERMETALLIC COMPOUNDS IN Al/GALVANIZED STEEL INTERFACE[J]. Acta Metall Sin, 2016, 52(1): 113-119.

全文: PDF(3312 KB)   HTML
摘要: 

基于亚点阵计算模型, 建立Al/镀锌钢板Pulsed DE-GMAW焊接接头界面区金属间化合物Fe2Al5Znx形成的Gibbs自由能计算模型. 利用该模型对Fe2Al5Znx金属间化合物生成的可能性及生成物相种类进行了计算分析, 并辅助以实验分析方法对计算结果进行了对比研究. 计算结果表明, Al/镀锌钢板Pulsed DE-GMAW焊接接头界面处可以形成Fe-Al-Zn三元化合物相, 该化合物相最终稳定于Fe2Al5Zn0.4, 且与实验结果一致, 由此表明所建立的计算模拟是合理, 能够正确反映Al/镀锌钢板Pulsed DE-GMAW焊接界面Fe-Al-Zn金属间化合物的生成情况. 通过对界面中心进行元素分布分析得出, Fe2Al5Zn0.4相的生成可分为3个阶段: 即液态Al对镀锌层的溶解、Zn元素的扩散迁移、Zn元素与金属间化合物Fe2Al5反应生成Fe2Al5Zn0.4.

关键词 Al/钢焊接Fe-Al-Zn金属间化合物热力学分析    
Abstract

As for the intermetallic compound of Al and galvanized steel welding interface has greatly affect on welding joint, the researchers study the formation mechanism of intermetallic compound at the Al/galvanized steel interface. In order to research on Al/galvanized steel welding joint interface area, Gibbs free energy calculation model of Fe-Al-Zn intermetallic compounds formation was established based on the lattice model. Using the Gibbs free energy calculation model the formation of Fe2Al5Znx intermetallic phase was calculated and analyzed. At the Al/galvanized steel welding interface area, the calculation result was confirmed by experiments. Fe-Al-Zn ternary compound phases were formed at the welding joint interface of Al/galvanized steel. The Fe-Al-Zn compound phases, Fe2Al5Zn0.4, was the most stable. The calculation results agreed well with experiment results. It is showed that the calculation model was reasonable and the method was appropriate and feasible. The calculation model could reflect the Fe-Al-Zn intermetallic compound formation at Al/galvanized steel welding joint correctly. Fe2Al5Zn0.4 phase formation process could be experienced three stages based on the study of element distribution analysis at the interface center. It is also called the galvanized layer was dissolved in liquid Al, the Zn element was diffused, the Fe2Al5Zn0.4 was generated based on the reaction of Zn element and intermetallic compound Fe2Al5.

Key wordsAl/steel welding    Fe-Al-Zn intermetallic compound    thermodynamic analysis
收稿日期: 2015-04-07     
基金资助:国家自然科学基金资助项目51165023
Parameter Symbol Expression or value
Interaction energy of Fe and Al 0L Fe, Al -91976.5+22.1314T
1LFe, Al -5672.58+4.8728T
2LFe, Al 121.9 K
Interaction energy of Fe and Zn 0L Fe, Zn 58088-23.665T
1LFe, Zn 92219-55.584T
2LFe, Zn 13570 K
Interaction energy of Al and Zn 0L Al, Zn 10465.5-3.39259T
Magnetic transition temperature Tc 1043 K
Gas constant R 8.314 J?mol-1?K-1
Magneton number of Fe b 2.22
表1  模型中的计算参数[26,27]
图1  x取不同值时Fe2Al5Znx相的标准Gibbs自由能
图2  从焊后接头试样的结合面处撕裂拉开后Al侧和镀锌钢板侧的形貌
图3  Al侧和镀锌钢板侧试样剥落面的XRD谱
图4  Al与镀锌钢熔钎焊焊缝横截面中心界面区的SEM-BSE像及元素面分布图
图5  Fe2Al5晶体结构3D示意图[29]
图6  Fe2Al5Zn0.4金属间化合物形成过程示意图
[1] Song J L, Lin S B, Yang C L. Welding Joining, 2008; (6): 6
[1] (宋建岭, 林三宝, 杨春利. 焊接, 2008; (6): 6)
[2] Chen S H, Ma K, Huang J H. Chin J Nonferrous Met, 2011; 21: 3076
[2] (陈树海, 马 柯, 黄继华. 中国有色金属学报, 2011; 21: 3076)
[3] Song J L, Lin S B, Yang C L, Ma G C, Liu H. Mater Sci Eng, 2009; A509: 3l
[4] Lin S B, Song J L, Yang C L, Fan C L, Zhang D W. China Weld, 2010; 19(1): 26
[5] Murakami T, Nakata K, Tong H, Ushio M. Join Weld Res Inst, 2003; 32(1): 35
[6] Lv X Q, Yang S L, Wu Y X. Weld J, 2004; 25(1): 95
[6] (吕学勤, 杨尚磊, 吴毅雄. 焊接学报, 2004; 25(1): 95)
[7] Qin G L, Su Y H, Wang S J. Acta Metall Sin, 2012; 48: 1018
[7] (秦国梁, 苏玉虎, 王术军. 金属学报, 2012; 48: 1018)
[8] Dong H G, Yang L Q, Dong C, Kou S D. Mater Sci Eng, 2010; A527: 7151
[9] Zhao X D, Xiao R S. Chin J Laser, 2012; 39(4): 0403004-1
[9] (赵旭东, 肖荣诗. 中国激光, 2012; 39(4): 0403004-1)
[10] Zhou D W, Peng Y, Xu S H, Liu J S. Acta Metall Sin, 2013; 49: 959
[10] (周惦武, 彭 艳, 徐少华, 刘金水. 金属学报, 2013; 49: 959)
[11] Furukawa K. Weld Int, 2006; 20: 440
[12] Zhang H T, Feng J C, He P. Mater Sci Technol, 2008; 24: 1346
[13] Murakami T, Nakata K, Tong H. ISIJ Int, 2003; 43: 1596
[14] Li K H, Chen J S, Zhang Y M. Weld J, 2007; 86(8): 231
[15] Shi Y, Wen J X, Huang J K. J Mech Eng, 2011; 47(16): 25
[15] (石 玗, 温俊霞, 黄健康. 机械工程学报, 2011; 47(16): 25)
[16] Shahvedi H, Ghomashchi M, Shabestari S. J Mater Sci, 2002; 37: 1061
[17] Giorgi M L, Guillot J B, Nicolle R. J Mater Sci, 2005; 40: 2263
[18] Lin K Y. PhD Dissertation, Case Western Reserve University, Cleveland, Ohio, 2011
[19] Li W C. Metallurgy and the Physical Chemistry of Materials. Beijing: Metallurgical Industry Press, 2011: 15
[19] (李文超. 冶金与材料物理化学. 北京: 冶金工业出版社, 2011: 15)
[20] Hiliert M, Stafansson L I. Acta Chem Scand, 1970; 24: 3618
[21] Hillert M, Jansson B, Sundman B, Agren J. Metall Trans, 1985; 16A: 261
[22] Xu Z Y,Li L. Material Thermodynamics. Beijing: Science Press, 2005: 161
[22] (徐祖耀,李 麟. 材料热力学. 北京: 科学出版社, 2005: 161)
[23] Sundman B, Ohnuma I, Dupin N, Kattner U R, Fries S G. Acta Mater, 2009; 57: 2896
[24] Redlich O, Kister A T. Ind Eng Chem, 1948; 40: 345
[25] Furukawa K. Weld Int, 2006; 20: 440
[26] Nakano J, Malakhov D, Yamaguchi S, Purdy G. Calphad, 2007; 31: 125
[27] Sundman B, Agren J. J Phys Chem Solids, 1981; 42: 297
[28] Shi Y, Han R H, Huang J K, Fan D. J Phys, 2012; 61(2): 23
[28] (石 玗, 韩日宏, 黄健康, 樊 丁.物理学报, 2012; 61(2): 23)
[29] Burkhardt U, Grin Y, Ellner M. Acta Cryst, 1994; 50B: 313
[1] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[2] 王晓亮 李长荣 郭翠萍 杜振民 何维. Mg-Zn合金时效过程中GP区析出的热力学分析[J]. 金属学报, 2010, 46(5): 575-580.
[3] 贾成厂; 石田清仁 . Ni-Al系中γ,γ’,β相平衡的实验与热力学分析[J]. 金属学报, 1999, 35(2): 193-197 .
[4] 仝兴存;沈宁福;柳百成. 快速凝固Al─3.18Ti─0.65C合金中TiC相的形成和分布特征[J]. 金属学报, 1994, 30(4): 155-159.