Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 129-134    DOI: 10.11900/0412.1961.2015.00193
  论文 本期目录 | 过刊浏览 |
空洞对镍基单晶合金纳米压痕过程的影响*
杨彪1,郑百林1(),胡兴健1,贺鹏飞1,岳珠峰2
1 同济大学航空航天与力学学院应用力学研究所, 上海 200092
2 西北工业大学力学与土木建筑学院, 西安 710072
EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY
Biao YANG1,Bailin ZHENG1(),Xingjian HU1,Pengfei HE1,Zhufeng YUE2
1 Institute of Applied Mechanics, School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2 School of Mechanics and Civil&Architecture, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(5760 KB)   HTML  
摘要: 

通过分子动力学方法, 研究了3种含相同半径、不同深度空洞的镍基单晶合金模型与理想模型纳米压痕过程的区别. 采用中心对称参数分析4种模型在不同压入深度时基体内部位错形核、长大的过程以及空洞和错配位错对纳米压痕过程的影响. 材料的压入荷载-压入深度曲线显示, 空洞最浅的模型与理想模型相差最大. 空洞对材料纳米压痕过程有2种作用, 当压入深度较浅时(h<0.375 nm), 空洞的存在会弱化材料, 而当压入深度处于0.375~0.567 nm之间时, 空洞表面的原子对位错的长大起到阻碍作用, 使得压入荷载增加; 空洞的坍塌会吸收一部分应变能, 减少γ相中层错的形成; 当空洞完全坍塌后, 位错会在空洞原始位置纠缠, 并产生大量层错, 使得压入荷载减小. γ/γ'相相界面存在空洞时, 当达到最大压入深度, 部分错配位错分解, 且被γ相表面吸收, 形成表面台阶. 处在最深位置的空洞并未对材料纳米压痕过程产生影响.

关键词 纳米压痕分子动力学空洞错配位错    
Abstract

Nanoindentation of Ni-based single crystal alloy which has a void defect is simulated by the molecular dynamics method. Three models with different voids which have a same radius but different depth (H=1.5 nm, 3.0 nm, 4.5 nm) are contrasted to the perfect model respectively. The influence of a void and misfit dislocation on nanoindentation process are analyzed using center symmetry parameter. Nucleation and growth of dislocation on various indentation depth are researched simultaneously. After relaxation, misfit dislocations occur in all models, which indicates that the void does not affect the generation of misfit dislocation in γ/γ' phase. The indentation load-depth curves show the shallow void (H=1.5 nm) has the greatest influence on nanoindentation. The results demonstrate that the void has two different ways to affect the nanoindentation process. Initially, the void softens the materials when the indentation depth is less than 0.375 nm. However, it will hinder the growth of dislocations because of a kind of surface force, which causes the increase of indentation load while the indentation depth is between 0.375 nm and 0.567 nm. The collapse of a void absorbs the strain energy, so the amount of stacking faults nucleation in γ phase in model with the shallow void is less than which in the perfect model. The indentation load-depth curves show that the indentation load in the H=1.5 nm model is larger than load in the perfect model at 1.263 nm indentation depth. But when the void collapses completely, dislocations tangle around the original location of the void and more stacking faults generate comparing to the perfect model at the same indentation depth h=1.743 nm. So the indentation load declines and becomes smaller than load in perfect model. If the void locates at the interface of γ/γ' phase (H=3.0 nm), it influence the nanoindentation process later than H=1.5 nm model. Dissociation of misfit dislocations is observed when the indentation depth arrives the maximum value 1.748 nm in H=3.0 nm model. Stairs form on the surface of γ phase because of the dissociation of misfit dislocations. There is almost no influence on the nanoindentation of Ni-based single crystal alloy when the void locates in the γ' phase (H=4.5 nm).

Key wordsnanoindentation    molecular dynamics    void    misfit dislocation
收稿日期: 2015-04-03      出版日期: 2015-09-06
基金资助:*国家重大国际(地区)合作研究资助项目51210008

引用本文:

杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY. Acta Metall, 2016, 52(2): 129-134.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00193      或      http://www.ams.org.cn/CN/Y2016/V52/I2/129

图1  计算模型示意图
图2  纳米压痕计算模型示意图
图3  4种模型弛豫后中心对称参数图
图4  4种模型压入荷载-压入深度曲线
图5  理想模型与H=1.5 nm模型在不同压入深度时基体内部中心对称参数图
图6  H=3.0 nm模型不同压入深度时基体内部中心对称参数图
图7  压入深度h=1.748 nm时基体内部中心对称参数图
图8  H=3.0 nm 模型在压入深度h=1.748 nm时基体表面中心对称参数图
[1] Nathal M V, MacKay R A, Garlick R G.Mater Sci Eng, 1985; 75: 195
[2] Probst-Hein M, Dlouhy A, Eggeler G.Acta Mater, 1999; 47: 2497
[3] Kamaraj M.Sadhana, 2003; 28: 115
[4] Zhu T, Wang C.Phys Rev, 2005; 72B: 14111
[5] Pyczak F, Devrient B, Neuner F C, Mughrabi H.Acta Mater, 2005; 53: 3879
[6] Zhu T, Wang C Y.Chin Phys, 2006; 15: 2087
[7] Xie H, Wang C, Yu T.Modelling Simul Mater Sci Eng, 2009; 17: 55007
[8] Wu W P, Guo Y F, Wang Y S, Mueller R, Gross D.Philos Mag, 2011; 91: 357
[9] Heckl A, Neumeier S, Göken M, Singer R F.Mater Sci Eng, 2011; A528: 3435
[10] Schuh C A.Mater Today, 2006; 9(5): 32
[11] Szlufarska I.Mater Today, 2006; 9(5): 42
[12] Landman U, Luedtke W D, Burnham N, Colton R.Science, 1990; 248: 454
[13] Belak J, Boercker D B, Stowers I F.Mrs Bull, 1993; 18: 55
[14] Liang H Y, Woo C H, Huang H, Ngan A, Yu T X.Philos Mag, 2003; 83: 3609
[15] Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M.Acta Phys Sin, 2010; 59: 5687
[15] (权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 物理学报, 2010; 59: 5687)
[16] Hu X J, Zheng B L, Hu T Y, Yang B, He P F, Yue Z F.Acta Phys Sin, 2014; 63(17): 218
[16] (胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 物理学报, 2014; 63(17): 218)
[17] Yu W, Shen S.Compos Mater Sci, 2009; 46: 425
[18] Yang Q L, Zhang G C, Xu A G, Zhao Y H, Li Y J.Acta Phys Sin, 2008; 57: 940
[18] (杨其利, 张广财, 许爱国, 赵艳红, 李英骏. 物理学报, 2008; 57: 940)
[19] Shan D B, Yuan L, Xu Z H, Guo B.J Nanosci Nanotechnol, 2009; 9: 1234
[20] Tan C M, Jeng Y R.Int J Solids Struct, 2009; 46: 1884
[21] Zhu P Z, Hu Y Z, Wang H.Sci China Phys Mech Astron, 2010; 53: 1716
[22] Njeim E K, Bahr D F.Scr Mater, 2010; 62: 598
[23] Fang T H, Chang W Y, Huang J J.Acta Mater, 2009; 57: 3341
[24] Hoffmann K H, Schreiber M. Computational Physics.Berlin Heidelberg: Springer-Verlag, 1996: 268
[25] Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A.Phys Rev, 1999; 59B: 3393
[1] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[2] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[3] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[4] 姚曼, 崔薇, 王旭东, 徐海譞, PHILLPOT S R. W辐照损伤初期的分子动力学研究*[J]. 金属学报, 2015, 51(6): 724-732.
[5] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[6] 梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
[7] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[8] 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*[J]. 金属学报, 2014, 50(2): 226-230.
[9] 姚曼,高晓,曾维鹏,王旭东,徐海譞,Simon R. Phillpot. hcp-Ti中辐照诱发缺陷演化及温度效应的分子动力学研究[J]. 金属学报, 2013, 49(5): 530-536.
[10] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[11] 坚增运,李娜,常芳娥,方雯,赵志伟,董广志,介万奇. Cu熔体中原子团簇在凝固过程中的演变规律分子动力学模拟[J]. 金属学报, 2012, 48(6): 703-708.
[12] 成宇浩 张跃飞 毛圣成 韩晓东 张泽. 温度对电沉积纳米孪晶Ni显微结构及纳米压痕力学性能的影响[J]. 金属学报, 2012, 48(11): 1342-1348.
[13] 张 林 李 蔚 刘永利 孙本哲 王佳庆. TiAl合金基体表面Ti薄膜在升温过程中结构变化的分子动力学模拟[J]. 金属学报, 2011, 47(8): 1080-1085.
[14] 贺新福 杨鹏 杨文. Fe-Cu合金基体损伤的分子动力学模拟研究[J]. 金属学报, 2011, 47(7): 954-957.
[15] 李勋平 周敏波 夏建民 马骁 张新平. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)\,BGA焊点界面IMC形成与演化的影响[J]. 金属学报, 2011, 47(5): 611-619.