Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 85-92    DOI: 10.11900/0412.1961.2015.00184
  本期目录 | 过刊浏览 |
中间热处理对Zr-1Nb-0.2Y合金在420 ℃空气中氧化性能的影响*
李长记1,2,熊良银1,2,刘实1,2()
1 中国科学院金属研究所, 沈阳 110016
2 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
EFFECT OF THE INTERMEDIATE HEAT TREATMENT PROCESSES ON THE OXIDATION CHARACTERIS- TICS OF Zr-1Nb-0.2Y ALLOY IN 420 ℃ AIR
Changji LI1,2,Liangyin XIONG1,2,Shi LIU1,2()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李长记,熊良银,刘实. 中间热处理对Zr-1Nb-0.2Y合金在420 ℃空气中氧化性能的影响*[J]. 金属学报, 2016, 52(1): 85-92.
Changji LI, Liangyin XIONG, Shi LIU. EFFECT OF THE INTERMEDIATE HEAT TREATMENT PROCESSES ON THE OXIDATION CHARACTERIS- TICS OF Zr-1Nb-0.2Y ALLOY IN 420 ℃ AIR[J]. Acta Metall Sin, 2016, 52(1): 85-92.

全文: PDF(4254 KB)   HTML
  
摘要: 

研究了中间热处理工艺对Zr-1Nb-0.2Y (质量数, %)合金在420 ℃空气中氧化性能的影响. 结果表明, 通过变形及适当的多道次退火, 可以有效控制合金化元素的析出, 最终获得合理组织与最佳性能. 随轧制及热处理道次加深, 合金的抗氧化性能逐渐提高, 由中间退火工艺为640 ℃, 3 h+570 ℃, 3 h得到的最终样品具有最优的抗氧化性能. 合金的位错密度对氧化性能的影响并不显著. TEM形貌观察以及沉淀相EDS分析表明, 中间热处理工艺通过影响沉淀相的体积分数、平均尺寸、合金化元素Nb+Y含量(平均含量与总含量)等因素来影响Zr-1Nb-0.2Y合金的氧化性能. 沉淀相的体积分数、尺寸和合金元素含量等因素通过协同作用共同影响Zr-1Nb-0.2Y合金的氧化性能.

关键词 Zr-1Nb-0.2Y合金中间热处理氧化性能沉淀相    
Abstract

Zr-based alloys have been used as cladding tubes in nuclear reactors for several decades due to their superior mechanical properties, good corrosion resistance and low neutron absorption cross-section. Zr alloys consist of hcp-structured a-Zr matrix and dispersed precipitate particles. These precipitate particles play a key role in improving the service performance of the alloy. In general, the manufacturing of Zr-based alloy tubes or sheets involves a series of deformation and annealing processes, which lead to a modification of the precipitate particles in size and distribution and an improvement of comprehensive properties of the alloys. In this work, the effect of intermediate heat treatment processes on precipitate particles and air oxidation characteristics of Zr-1Nb-0.2Y (mass fraction, %) alloy was studied. With increase of rolling and annealing times, the oxidation resistance of Zr-1Nb-0.2Y alloy was improved. The final product from manufacturing route II with intermediate annealing process of 640 ℃, 3 h+570 ℃, 3 h was proved to be most resistant to oxidation in 420 ℃ air. TEM images and EDS results showed that relevant parameters such as precipitate particle volume fraction, precipitate particle mean diameter, Nb+Y content (including mean content and total content) in precipitate particles were modified by intermediate annealing processes, which essentially influenced the oxidation characteristics of Zr-1Nb-0.2Y alloy. The smaller the mean size of precipitate particle and the higher the Nb+Y content in the precipitate particle are, the better the resistance to air oxidation of Zr-1Nb-0.2Y alloy.

Key wordsZr-1Nb-0.2Y alloy    intermediate heat treatment process    oxidation characteristics    precipitate
收稿日期: 2015-03-31     
基金资助:国家自然科学基金资助项目91126001
图1  Zr-1Nb-0.2Y合金的4种中间退火工艺
图2  不同加工路径的Zr-1Nb-0.2Y合金在420 ℃空气中的氧化增重曲线
图3  Zr-1Nb-0.2Y合金经相同变形不同热处理后的氧化增重曲线
图4  样品S1, S1′及样品S1′在420 ℃空气中氧化400 h后的TEM像
图5  样品S1和S1′在420 ℃空气中氧化472 h的增重曲线
图6  Zr-1Nb-0.2Y合金在不同轧制及热处理阶段的TEM像
图7  Zr-1Nb-0.2Y合金中含Y沉淀相的EDS分析和Zr-0.2Y合金方形沉淀相的TEM像
图8  不同加工阶段的Zr-1Nb-0.2Y合金经420 ℃空气氧化532 h后的氧化增重与沉淀相的体积分数、沉淀相的平均尺寸、Nb+Y在沉淀相中的平均含量、Nb+Y在沉淀相中的总含量和Nb+Y在基体中的总含量的关系
[1] Cox B. J Nucl Mater, 2005; 336: 331
[2] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[3] Gong W J, Zhang H L, Qiao Y, Tian H, Ni X D, Li Z K, Wang X T. Corros Sci, 2013; 74: 323
[4] Nikulin S A, Khanzhin V G, Rozhnov A B, Belov V A. Met Sci Heat Treat, 2009; 51: 230
[5] Petrova I I, Samsonov B N, Peletsky V E, Nikulina A V, Sokolov N B, Andreeva-Andrievskaya L N. Int J Thermophys, 2002; 23: 1347
[6] Nikulina A V. Met Sci Heat Treat, 2004; 46: 458
[7] Liu J Z. Nuclear Structure Materials. Beijing: Chemical Industry Press, 2007: 5
[7] (刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 5)
[8] Li Z K, Liu J Z, Zhou L, Li C, Zhang J J. Rare Met Mater Eng, 2002; 31: 261
[8] (李中奎, 刘建章, 周 廉, 李 聪, 张建军. 稀有金属材料与工程, 2002; 31: 261)
[9] Canay M, Danón C A, Arias D. J Nucl Mater, 2000; 280: 365
[10] Ni N, Lozano-Perez S, Sykes J M, Smith G D W, Grovenor C R M. Corros Sci, 2011; 53: 4073
[11] Seok C S, Bae B K, Koo J M, Murty K L. Eng Fail Anal, 2006; 13: 389
[12] Steinbrück M, B?ttcher M. J Nucl Mater, 2011; 414: 276
[13] Park J Y, Yoo S J, Choi B K, Jeong Y H. J Nucl Mater, 2008; 373: 343
[14] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater, 2006; 359: 59
[15] Zhou B X, Yao M Y, Li Z K, Wang X M, Zhou J, Long C S, Liu Q, Luan B F. J Mater Sci Technol, 2012; 28: 606
[16] Zhao W J, Liu Y Z, Jiang H M, Peng Q. J Alloys Compd, 2008; 462: 103
[17] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J H, Park J Y, Kim J H, Kim H G. J Nucl Sci Technol, 2006; 43: 977
[18] Kim H G, Park J Y, Jeong Y H, Koo Y H, Yoo J S, Mok Y K, Kim Y H, Suh J M. J Nucl Sci Technol, 2014; 46: 423
[19] Duriez C, Dupont T, Schmet B, Enoch F. J Nucl Mater, 2008; 380: 30
[20] Batra I S, Singh R N, Sengupta P, Maji B C, Madangopal K, Manikrishna K V, Tewari R, Dey G K. J Nucl Mater, 2009; 389: 500
[21] Batra I S, Singh R N, Khandelwal H K, Mukherjee A, Krishnamurthy N, Gargi C, Shah B K. J Nucl Mater, 2013; 434: 389
[22] Li C J, Xiong L Y, Wu E D, Liu S. J Nucl Mater, 2015; 457: 142
[23] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1
[24] Kim H G, Choi B K, Park J Y, Jeong Y H. Corro Sci, 2009; 51: 2400
[25] Kim H G, Park S Y, Lee M H, Jeong Y H, Kim S D. J Nucl Mater, 2008; 373; 429
[26] Li Q, Liang X, Peng J C, Liu R D, Yu K, Zhou B X. Acta Metall Sin, 2011; 47: 893
[26] (李 强, 梁 雪, 彭剑超, 刘仁多, 余 康, 周邦新. 金属学报, 2011; 47: 893)
[1] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[2] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[4] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[5] 李轩, 郭喜平, 乔彦强. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2复合渗层的组织及其抗高温氧化性能*[J]. 金属学报, 2015, 51(6): 693-700.
[6] 赵海根,李树索,裴延玲,宫声凯,徐惠彬. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287.
[7] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[8] 石宇野,焦少阳,董建新,张麦仓. 镍基高温合金γ'相析出的经典动态模型及应用[J]. 金属学报, 2012, 48(6): 661-670.
[9] 范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
[10] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[11] 张平 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.
[12] 田艳红 王春青 赵少伟. Cu焊盘TiN/Ag金属化层超声键合性能及抗氧化性能[J]. 金属学报, 2010, 46(5): 618-622.
[13] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[14] 郭建亭; 袁超; 侯介山 . 稀土元素在NiAl合金中的作用[J]. 金属学报, 2008, 44(5): 513-520 .
[15] 侯介山; 郭建亭; 周兰章; 叶恒强 . K44镍基高温合金长期时效过程中γ'相粗化对拉伸性能的影响[J]. 金属学报, 2006, 42(5): 481-486 .