Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1416-1424    DOI: 10.11900/0412.1961.2015.00147
  本期目录 | 过刊浏览 |
基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*
马玉田,刘俊标(),霍荣岭,韩立,牛耕
RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING
Yutian MA,Junbiao LIU(),Rongling HUO,Li HAN,Geng NIU
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
引用本文:

马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
Yutian MA, Junbiao LIU, Rongling HUO, Li HAN, Geng NIU. RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING[J]. Acta Metall Sin, 2015, 51(11): 1416-1424.

全文: PDF(873 KB)   HTML
摘要: 

根据端窗透射Micro-CT靶材的理论模型设计了W-Al透射靶材的基本结构, 结合Geant4计算模拟软件和Müller的靶温升计算模型分别确定了W靶面和Al基体的厚度. 以YXLON光机的W-Al透射靶材结构参数为依据, 采用磁控溅射法在Al基体表面分别制备了厚度为2, 5和8 μm的W薄膜, 并借助SEM进行微观形貌分析, 得到了致密度和均匀度均较好的W薄膜靶面. 借助YXLON的X射线管, 对3种不同厚度靶材的X射线出射率及其对应所需功率进行了实验研究, 结果表明: W靶面的最佳厚度是5 μm, 此时, 靶材的X射线出射率最大且产生X射线所需的功率最小. 在此基础上, 进行了X射线出射率和X射线成像效果的对比实验, 结果表明: 无论在X射线出射率及其所需功率方面, 还是在X射线成像效果方面, W靶面厚度为5 μm的W-Al透射靶材的性能均优于YXLON W-Al透射靶材, 能够满足Micro-CT所需的高质量靶材的应用要求.

关键词 显微计算机断层成像磁控溅射透射靶材W薄膜    
Abstract

Micro-computed tomography is a new three-dimension high-resolution imaging device, which due to its X-ray brightness generated by a compact electron impact X-ray source. To achieve higher X-ray brightness, the size of the X-ray source should be as small as possible. However, the X-ray brightness is fundamentally limited by the maximum possible heat dissipation of the X-ray target. As an electron beam strikes a metallic target, the power density of target is increased with the decreasing of the spot size of electron beam, which results in the decrease of the X-ray brightness by significant temperature elevation of the target surface. A practical solution for these requirements is the use of a multi-film target consisting of a thin-film target on a thicker substrate film. The substrate should be composed of a light material with high thermal conductivity to prevent absorption of the signal X-rays and to elevate the target temperature. In such a multi-film target, several factors as following must be considered to choose the materials and thicknesses of the multiple films: the highest power density of the target can sustain without performance degradations or damage, and the efficiency of the X-ray generation in the target material including any self absorption effects. The present work designed a basic structure of tungsten-aluminum transmission target, according to the theoretical model of the end-window transmission target for Micro-CT. The thicknesses of tungsten target surface and aluminum substrate are determined by the Geant4 simulation results and the Müller calculation model of temperature rise, respectively. According to the structure parameter of tungsten-aluminum transmission target of YXLON, the tungsten film with the thickness of 2, 5 and 8 μm are prepared on the aluminum substrate by the magnetron sputtering method. The density and evenness of tungsten film both are well by the SEM analysis. The performance of three kinds of target with different thicknesses is carried out on the X-ray tube of YXLON. The results show that the optimal thickness of tungsten film is 5 μm, and the X-ray emitting efficiency of tungsten-aluminum transmission target is the biggest, which the corresponding production power of X-ray is the lowest. On this basis, the contrast experiments of X-ray emitting efficiency and X-ray imaging effect are carried out between the tungsten-aluminum transmission target of homemade and that of YXLON. The experimental results indicate that the X-ray emitting efficiency, the corresponding X-ray production power and the X-ray imaging effect of homemade target all are superior to that of YXLON, which could be satisfied the application requirements of high quality target for Micro-CT.

Key wordsmicro-computed tomography    magnetron sputtering    transmission target    tungsten film
    
基金资助:*国家重大科学仪器设备开发专项资助项目2011YQ030112
图1  W-Al端窗透射靶材的理论模型
图2  最佳靶材厚度随电压的变化关系和70 kV时W靶面的X射线产额
图3  磁控溅射方法制备的靶面W薄膜和YXLON光机靶面W薄膜微观形貌的SEM像
图4  不同模式不同加速电压下YXLON原机和3种厚度W-Al透射靶出射的X射线强度及其所需功率
图5  不同模式不同管电流下YXLON原机和5 μm厚度W-Al透射靶出射的X射线强度及其所需功率
图6  不同条件下使用W靶面厚度为5 μm的靶材和YXLON靶材的X射线成像
[1] Rubin C, Turner A S, Müller R, Mittra E, McLeod K, Lin W, Qin Y.J Bone Miner Res, 2002; 17: 349
[2] Moreno-Atanasio R, Richard A W. Particuology, 2010; 8: 81
[3] Gui J B, Hu Z L, Zhou Y, Zheng H R. CT Theory Appl, 2009; 18:106 (桂建保, 胡战利, 周颖, 郑海荣. CT理论与应用研究, 2009; 18:106)
[4] Yan J, Jiang S E, Su M, Wu S C, Lin Z W. Acta Phys Sin, 2012; 61: 068703 (晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. 物理学报, 2012; 61: 068703)
[5] Yan J, Zheng J H, Chen L, Lin Z W, Jiang S E. Acta Phys Sin, 2012; 61: 148701 (晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. 物理学报, 2012; 61: 148701)
[6] Cnudde V, Boone M N. Earth-Sci Rev, 2013; 123: 1
[7] Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q. Acta Phys Sin, 2012; 61: 054205 (王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔. 物理学报, 2012; 61: 054205)
[8] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q. Acta Phys Sin, 2014; 63: 104202 (戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 物理学报, 2014; 63: 104202)
[9] Batemna J E, Moss G R, Roekett P, Webb S. Nucl Instru Meth, 1988; 273A: 767
[10] Pinies B R. translated by He L. Fine-Focus X-ray Tube and its Application in Structural Analysis. Beijing: Science Press, 1963: 40 (Pinies B R著, 何犖译. 细聚焦X射线管及其在结构分析中的应用. 北京: 科学出版社,1963: 40)
[11] Ihsan A, Heo S H, Cho S O. Nucl Instru Meth, 2009; 267B: 3566
[12] Wu Y, Wang G Y, Mu Q, Zhao Q. Chin Phys, 2014; 23B: 013401
[13] Mei C X, Zhang X A, Zhao Y T, Zhou X M, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Wang Y Y, Liang C H, Li Y Z, Xiao G Q. Chin Phys, 2013; 22B: 103403
[14] Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B. Chin Phys, 2011; 20B: 042901
[15] Wang Y F, Que J M, Cao D Q, Sun C L, Zhao W, Wei C F, Shi R J, Wei L. Chin Phys, 2013; 37C: 078202
[16] Wang Y, Li Q, Jiang X G. Chin Phys, 2012; 36C: 861
[17] Dai Q S, Qi Y J. Acta Phys Sin, 2010; 59: 357 (代秋声, 漆玉金. 物理学报, 2010; 59: 357)
[18] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2005; 37: 356
[19] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2004; 36: 1417
[20] Gao L N, Chen W G. Chin J Rare Met, 2008; 32: 605 (高丽娜, 陈文革. 稀有金属, 2008; 32: 605)
[21] Gao L N. Electron Des Eng, 2012; 20(19): 168 (高丽娜. 电子设计工程, 2012; 20(19): 168)
[22] Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S. High Power Laser Part Beams, 2012; 25: 1396 (来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实. 强激光与粒子束, 2012; 25: 1396)
[23] Park C K, Kim J P, Yun S J, Lee S H, Park J S. Thin Solid Films, 2007; 516: 304
[24] Jenneson P M, Luggar R D, Morton E. J Appl Phys, 2004; 96: 2889
[25] Senda S, Sakai Y, Mizuta Y, Kita S, Okuyama F. Appl Phys Lett, 2004; 85: 5679
[26] Ma Y H. The Characteristics of X-ray, X-ray Physics and Protection. Beijing: People's Medical Publishing House, 1996: 27 (马延洪. 特征X线、X线物理与防护. 北京: 人民卫生出版社, 1996: 27)
[27] Teterev U G, Belov A G. Atomic Energy, 2001; 91: 745
[28] Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R. Surf Interface Anal, 2005; 37: 356
[29] Cao Q Q, Jin C, Ren X, Sha J T. Chin J Radiol Health, 2013; 22(1): 15 (曹琴琴, 金川, 任翔, 沙京田. 中国辐射卫生, 2013; 22(1): 15)
[30] Yang Q, Ge L Q, Gu Y, Hua Y T, Luo Y Y. Spectrosc Spectral Anal, 2013; 33: 1130 (杨强, 葛良全, 谷懿, 花永涛, 罗耀耀. 光谱学与光谱分析, 2013; 33: 1130)
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[3] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[4] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[5] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[6] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[7] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[8] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[9] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[10] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[11] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[12] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
[13] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[14] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[15] 李小婵, 柯培玲, 刘新才, 汪爱英. 复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备*[J]. 金属学报, 2014, 50(7): 879-885.