Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1059-1066    DOI: 10.11900/0412.1961.2015.00132
  本期目录 | 过刊浏览 |
GH3535合金在FLiNaK熔盐中的腐蚀行为
刘涛1,2,董加胜2(),谢光2,王义胜3,李辉2,李志军4,周兴泰4,楼琅洪2
2 中国科学院金属研究所, 沈阳 110016
3 中国南方航空工业(集团)有限公司机动分公司, 株洲 412002
4 中国科学院上海应用物理研究所, 上海 201800
CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT
Tao LIU1,2,Jiasheng DONG2(),Guang XIE2,Yisheng WANG3,Hui LI2,Zhijun LI4,Xingtai ZHOU4,Langhong LOU2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Power Branch, AVIC China National South Aviation Industry Co., Ltd., Zhuzhou 412002
4 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
引用本文:

刘涛,董加胜,谢光,王义胜,李辉,李志军,周兴泰,楼琅洪. GH3535合金在FLiNaK熔盐中的腐蚀行为[J]. 金属学报, 2015, 51(9): 1059-1066.
Tao LIU, Jiasheng DONG, Guang XIE, Yisheng WANG, Hui LI, Zhijun LI, Xingtai ZHOU, Langhong LOU. CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT[J]. Acta Metall Sin, 2015, 51(9): 1059-1066.

全文: PDF(7887 KB)   HTML
摘要: 

将带Al2O3涂层和无涂层的GH3535合金在FLiNaK熔盐中进行全浸腐蚀实验, 利用SEM, EDS, XRD等手段研究了有无Al2O3涂层的GH3535合金在熔盐中的腐蚀行为. 结果表明, 有无涂层的GH3535合金在700 ℃的FLiNaK熔盐中的腐蚀行为均表现出Cr, Mo的脱熔腐蚀特征, 无涂层合金表现出显著的沿晶腐蚀特征. Al2O3涂层并未提高合金的抗腐蚀性能, Al2O3涂层在FLiNaK熔盐中发生了溶解, 并与因Al2O3溶解脱落而裸露出来的合金表面形成腐蚀电池, 从而加速了GH3535合金的腐蚀.

关键词 GH3535合金FLiNaK熔盐Al2O3涂层腐蚀    
Abstract

As one of the most promising next generation reactors, the molten salt breeder reactor (MSBR) with excellent inherence security has attracted more and more attentions in recent years due to energy shortage and the security problem of traditional nuclear reactor. The most significant service characteristic of the structural material used in MSBR is the existence of FLiNaK molten salt compared with other nuclear reactors. FLiNaK molten salt is very corrosive to the structural material in the reactor, and affects the safety operation of nuclear power plants. A polycrystalline Ni-Mo-Cr-Fe superalloy was developed and used as an important structural material in MSBR at Oak Ridge National Laboratory (ORNL), but the corrosion mechanism of the alloy in FLiNaK molten salt has not been determined since the study terminated in 1970' s as some politic reasons. Alloy served in harsh environments, often using protective coating to improve the corrosion properties. While few works about the coating corrosion resistance in FLiNaK molten salt were reported at present. Al2O3 and Cr2O3 coatings usually have excellent corrosion resistance in molten salt, such as sulphate, nitrate and halide molten salt. But, whether the oxide film has corrosion resistance in FLiNaK molten salt has not been determined. In this work, the corrosion mechanism of alloy in FLiNaK molten salt was studied by using immersion corrosion experiment through the method of SEM, EDS and XRD. The influence of Al2O3 coating on corrosion resistance in FLiNaK molten salt was also investigated. The results show that the Al2O3 coating does not affect the exsolution corrosion characteristics of Cr and Mo elements in FLiNaK molten salt at 700 ℃ for 400 h. The different is that naked alloy exhibits intergranular corrosion characteristic, and the alloy with Al2O3 coating exhibits spot corrosion characteristic. The Al2O3 coating cannot improve the corrosion resistance of the alloy in FLiNaK molten salt. The Al2O3 film dissolved in molten salt and resulted in the exposure of the alloy surface. The corrosion rate was increased since the formation of corrosion cell between oxide film and the exposed alloy surface.

Key wordsGH3535 alloy    FLiNaK molten salt    Al2O3 coating    corrosion
    
基金资助:* 中国科学院战略性先导科技专项资助项目XDA020404040
图 1  有无Al2O3涂层的GH3535合金在700 ℃ FLiNaK熔盐中腐蚀400 h后表面腐蚀形貌的SEM像
图 2  有无Al2O3涂层的GH3535合金在700 ℃ FLiNaK熔盐中腐蚀400 h后表面的XRD谱
图 3  无Al2O3涂层GH3535合金样品熔盐腐蚀后横截面腐蚀形貌的SEM像
图 4  无Al2O3涂层GH3535合金样品腐蚀后元素分布
图5  带Al2O3涂层GH3535合金样品横截面腐蚀形貌的SEM像
图6  带Al2O3涂层GH3535合金样品熔盐腐蚀后元素分布
图7  无Al2O3涂层GH3535合金在FLiNaK熔盐中腐蚀反应示意图
图8  Al2O3涂层在FLiNaK熔盐中腐蚀反应过程示意图
图9  Al2O3涂层破损后腐蚀反应过程示意图
[1] Guerrieri C, Cammi A, Luzzi L. Prog Nucl Energ, 2013; 67: 56
[2] Zou S L, Zou Y. J Univ South China (Soc Sci Ed), 2011; 12(2): 1 (邹树梁, 邹 旸. 南华大学学报(社会科学版), 2011; 12(2): 1)
[3] Zanetti M, Cammi A, Fiorina C, Luzzi L. Prog Nucl Energy, 2015; 83: 82
[4] Jér?me S, Michel A, Ondrej B, Sylvie D, Olga F, Véronique G, Daniel H, David H, Victor I, Jan L K, Lelio L, Elsa M L, Jan U, Ritsuo Y, Dai Z. Prog Nucl Energy, 2014; 77: 308
[5] Rosenthal M W, Kasten P R, Briggs R B. Nucl Appl Technol, 1970; 8: 107
[6] Manly W D, Coobs J H, De Van J H, Douglas D A, Inouye H, Patriarca P, Roche T K, Scott J L. Prog Nucl Energy, 1960; 4: 164
[7] Wang Y M. J Chin Soc Corros Prot, 1981; 1: 64 (罔毅民. 中国腐蚀与防护学报, 1981; 1: 64)
[8] Nobuya I, Yukio M, Kazuo F, Yoshio K, Hiroshi K. Trans JWRI, 1980; 9: 117
[9] Kondo M, Nagasaka T, Xu Q, Muroga T, Sagara A, Noda N, Ninomiya D, Nagura M, Suzuki A, Terai T, Fujii N. Fusion Eng Des, 2009; 84: 1081
[10] Olson L C, Ambrosek J W, Sridharan K, Anderson M H, Allen T R. J Fluorine Chem, 2009; 130: 67
[11] Cho S H, Park S B, Kang D S, Jeong M S, Park H, Hur J M, Lee H S. J Nucl Mater, 2010; 399: 212
[12] Rahman A, Chawlab V, Jayaganthan R, Chandra R, Ambardar R. Mater Chem Phys, 2011; 126: 253
[13] Dutta R S, Yusufali C, Paul B, Majumdar S, Sengupta P, Mishra R K, Kaushik C P, Kshirsagar R J, Kulkarni U D, Dey G K. J Nucl Mater, 2013; 432: 72
[14] Ma J, Jiang S M, Gong J, Sun C. Corros Sci, 2012; 58: 251
[15] Firouzi A, Shirvani K. Corros Sci, 2010; 52: 3579
[16] Zheng D Y, Zhu S L, Wang F H. Surf Coat Technol, 2006; 200: 5931
[17] Phahle A M, Hill A E, Calderwood J H. Thin Solid Films, 1974; 22: 67
[18] Dasher B E, Farmer J, Ferreira J, Caro M S, Rubenchik A, Kimura A. J Nucl Mater, 2011; 419: 15
[19] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J. J Mater Sci Technol, 2015; 31: 269
[20] Ouyang F Y, Chang C H, You B C, Yeh T K, Kai J J. J Nucl Mater, 2013; 437: 201
[21] Tyreman C J. PhD Dissertation, University of Manchester, Manchester, UK, 1986
[22] Olson L C. PhD Dissertation, University of Wisconsin-Madison, Madison, USA, 2009
[23] Fu G F, Wang J, Kang J. Trans Nonferr Met Soc China, 2008; 18: 743
[24] Dreveton A. Procedia Eng, 2012; 46: 255
[25] Cao C N. Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 104 (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 104)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[12] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[13] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[14] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.