Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1025-1037    DOI: 10.11900/0412.1961.2015.00127
  论文 本期目录 | 过刊浏览 | 高级检索 |
SiCf/TC17复合材料拉伸行为研究
张旭,王玉敏(),杨青,雷家峰,杨锐
 
STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES
Xu ZHANG,Yumin WANG(),Qing YANG,Jiafeng LEI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(16436 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

研究了SiCf/TC17复合材料的室温、高温(773 K)拉伸性能及其断裂机制. 结果表明: SiCf/TC17复合材料室温、高温应力-应变曲线受纤维线弹性变形和基体屈服程度影响呈现不同的形状; 室温断裂机制主要是反应层多次断裂、纤维一次断裂和基体脆性断裂等, 高温断裂机制主要是纤维多次断裂、基体韧性断裂和大范围的界面脱黏等; 纤维累计损伤理论适合于对SiCf/TC17复合材料断裂强度的估测, 其中室温断裂强度符合临界断裂纤维数大于或等于3时的局部承担载荷模型, 高温断裂强度符合均匀承担载荷模型. 结合断裂机制和强度估算结果, 详细论述了SiCf/TC17复合材料室温、高温拉伸断裂过程.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张旭
王玉敏
杨青
雷家峰
杨锐
关键词 钛基复合材料SiC纤维拉伸性能断裂机制断裂过程    
Abstract

Tensile properties and fracture mechanisms of SiCf/TC17 composites at room temperature and 773 K were studied. The results show that fiber elastic deformation and matrix yielding contributed to the shapes of the stress-strain curves of SiCf/TC17 composites, which were the bilinear appearance at 298 K and the slight curvature at 773 K. Major fracture mechanism of SiCf/TC17 composites at room temperature were as follows: multiple fractures of the interfacial reaction layer, single fiber fracture, matrix brittle fracture etc.. Typical fracture mechanism of SiCf/TC17 composites at elevated temperature were as follows: multiple fiber fracture, matrix plastic fracture, interface debonding etc.. Fiber cumulating damage theory was proved to be suitable for estimation of the fracture strength of this composite. The calculations of local loading sharing model while taking three or more fibers failure into account and global loading sharing model were close to the experimental values of room temperature and elevated temperature respectively. In addition, according to fracture mechanisms and strength prediction, tensile fracture process of SiCf/TC17 composites at room and elevated temperature were explained in detail. At room temperature, multiple fractures of the interfacial reaction layer started at first, and then the weak fiber fractured gradually and randomly. After critical fiber cluster has been formed by nearby broken fibers, the crack extended into the matrix from these fibers. With the increase of load, the fibers and the matrix at the tip of crack gradually destroyed. At the same time, the cracks from other critical fiber clusters were also expanding and connecting to each other. When the crack area has reached the critical level, the remaining fiber and matrix quickly fractured. However, at elevated temperature the matrix yielded firstly, and then multiple fracture randomly of the interfacial reaction layer and the weak fiber occurred sequentially. The crack from broken fiber deflected at interface between fiber and matrix, caused interface debonding. With the increasing of broken fiber number, the micro-cavities of matrix emerged gradually in the stress concentration area. When the total crack area accumulated by the broken fibers and micro-cavities of matrix has reached the critical level, the remaining fiber and matrix quickly fractured.

Key wordstitanium matrix composite    SiC fiber    tensile property    fracture mechanism    fracture process
     出版日期: 2015-07-16
ZTFLH:     
基金资助: 
引用本文:   
张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES. Acta Metall, 2015, 51(9): 1025-1037.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00127      或      http://www.ams.org.cn/CN/Y2015/V51/I9/1025
Fig.1  SiCf /TC17复合材料拉伸试样示意图
Fig.2  热等静压后SiCf/TC17复合材料的微观形貌
Material Testing temperature Yield strength Fracture strength Failure strain Elastic modulus
K MPa MPa % GPa
SiCf/TC17 298 1150 1717 0.91 196
SiCf/TC17 773 - 1341 0.79 184
TC17 298 959 1059 >2.00 113
TC17 773 613 726 >2.00 77
Table 1  SiCf/TC17复合材料及基体的拉伸性能
Fig.3  SiCf/TC17复合材料及TC17合金的拉伸应力-应变曲线
Fig.4  SiCf/TC17复合材料298 K拉伸断口形貌
Fig.5  SiCf/TC17复合材料773 K拉伸断口形貌
Fig.6  SiCf/TC17复合材料室温拉伸断口中平坦区域的纵剖面典型形貌
Fig.7  SiCf/TC17复合材料室温拉伸断口中起伏较大区域的纵剖面典型形貌
Fig.8  SiCf/TC17复合材料773 K拉伸断口的纵剖面典型形貌
Fig.9  SiCf/TC17复合材料高温拉伸时的纤维断裂
Testing temperature K scomp / MPa
Experiment GLS LLS, i=1 LLS, i=2 LLS, i=3 LLS, i=4
298 1717 2048 1361 1608 1701 1746
773 1341 1381 599 1071 1136 1167
Table 2  SiCf/TC17 复合材料断裂强度的实验值及模型估测结果
[1] Christoph L, Frank K, Joachim H, Wolfgang A K. Aerosp Sci Technol, 2003; 7: 201
[2] Nicolas C, Frédéric F, Serge K. Aerosp Sci Technol, 2003; 7: 307
[3] Naseem K, Yang Y Q, Luo X, Huang B, Feng G H. Mater Sci Eng, 2011; A528: 4507
[4] Thomas M P, Winstone M R. Compos Sci Technol, 1999; 59: 297
[5] Gundel D B, Wawner F E. Compos Sci Technol, 1997; 57: 471
[6] Fukushima A, Fujiwara C, Kagawa Y, Masuda C. Mater Sci Eng, 2000; A276: 243
[7] Weber C H, Chen X, Connell S J, Zok F W. Acta Metall Mater, 1994; 42: 3443
[8] Gálvez F, González C, Poza P, Llorca J. Scr Mater, 2001; 44: 2667
[9] Kagawa Y, Fujita T, Okura A. Acta Metall Mater, 1994; 42: 3019
[10] Peters P W M, Hemptenmacher J. Composites, 2002; 33A: 1373
[11] Truon A, Ccota J, Mainí P, Trias D, Mayugo J A. Compos Sci Technol, 2005; 65: 2039
[12] Baik K H, Grant P S. Scr Mater, 2001; 4: 607
[13] Yang Y Q, Zhu Y, Ma Z J, Chen Y. Scr Mater, 2004; 5: 385
[14] González C, Llorca J. Acta Mater, 2001; 49: 3505
[15] Zhang X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (张 旭. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[16] Garc??a-Leiva M C, Oca?a I, Mart??n-Meizoso A, Mart??nez-Esnaola J M, Marqués V, Heredero F. Eng Fract Mech, 2003; 70: 2137
[17] Cheng T T, Jones I P, Shatwell R A, Doorbar P. Mater Sci Eng, 1999; A260: 139
[18] Hill R A. J Mech Phys Solids, 1965; 13: 213
[19] Curtin W A. J Am Ceram Soc, 1991; 74: 283
[20] Curtin W A. Composites, 1993; 24: 98
[21] Li J K, Yang Y Q, Yuan M N, Luo X, Li L L. Trans Nonferrous Met Soc China, 2008; 18: 523
[22] Chandra N, Ghonem H. Composites, 2001; 32A: 575
[23] Chandra N, Ananth C R. Compos Sci Technol, 1995; 54: 87
[24] Kalton A F, Howard S J, Janczak-rusch J, Clyne T W. Acta Mater, 1998; 46: 3175
[25] Jeng S M, Yang J M, Yang C J. Mater Sci Eng, 1991; A138: 169
[1] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[2] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[3] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[4] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[5] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[6] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[7] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[8] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
[9] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[10] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[11] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[12] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[13] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[14] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.
[15] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed