Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1121-1128    DOI: 10.11900/0412.1961.2015.00126
  本期目录 | 过刊浏览 |
B微合金化对HK40合金铸造疏松的影响
丁贤飞1,2,刘东方3,4,郑运荣1,冯强1,2,3()
2 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
3 北京科技大学新金属材料国家重点实验室, 北京 100083
4 北京航空材料研究院熔铸中心, 北京 100095
EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS
Xianfei DING1,2,Dongfang LIU3,4,Yunrong ZHENG1,Qiang FENG1,2,3()
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal, University of Science and Technology Beijing, Beijing 100083
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
4 Melting and Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
Xianfei DING, Dongfang LIU, Yunrong ZHENG, Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS[J]. Acta Metall Sin, 2015, 51(9): 1121-1128.

全文: PDF(9307 KB)   HTML
摘要: 

利用SEM, OM和XRD等手段分析了HK40合金铸件铸造疏松形成原因, 并研究了添加微量B对HK40合金的凝固组织及疏松形成的影响. 结果表明: HK40合金铸件主要存在A和B 2种铸造疏松缺陷. A类疏松主要由于枝晶的快速生长并架桥联接导致架桥枝晶之间区域的补缩不足引起; B类疏松产生原因是相邻枝晶间区域生长的枝晶状M7C3型碳化物堵塞枝晶间补缩通道. B微合金化能降低HK40合金铸件较强的柱状晶生长趋势, 细化枝晶, 能抑制HK40合金A类铸造疏松缺陷的产生. 同时, B微合金化增加了HK40合金枝晶间共晶相的体积分数, 使枝晶间呈枝晶状M7C3型碳化物转变为层片状的M23C6型碳化物析出, 避免碳化物堵塞相邻枝晶间的补缩通道, 因而也减小了B类铸造疏松缺陷的形成倾向.

关键词 HK40合金B微合金化铸造疏松硼化物碳化物    
Abstract

Casting microporosity defect is one of the important issues for as-cast HK40 alloys preparation, which is of great importance to application performance of the alloy castings. A comprehensive understanding of the mechanism on formation of the casting microporosity defect is still unclear for the alloys. In this work, the casting microporosity defect and influences of boron micro-alloying on the as-cast microstructures and microporosities in HK40 alloys castings were investigated by means of SEM, OM and XRD, etc.. The microstructures in the HK40 alloys with and without boron micro-alloying after quenching at high temperatures were also examined to check the solidification characteristic change attribute to boron addition. The results show that there are two types of casting microporosities in the castings. Type A is mainly caused by the rapid growth of dendrites and thus dendritic bridge connecting which lead to feeding shortages between the bridge dendrites. Type B is, however, resulted by the growth of M7C3 carbides in coarsened dendritic morphology which induce to the feeding channel blockage in adjacent interdendritic regions. Boron micro-alloying decreases the tendency of columnar grain formation and refines the dendrites in HK40 alloys which therefore suppresses the casting microporosity defect of type A. Additionally, boron micro-alloying not only increases the volume fraction of eutectic phases, but also changes the M7C3 carbides in dendritic morphology into the M23C6 carbides in lamellar morphology, which prevents the feeding channal blockage in adjacent interdendritic regions, thus reduces the casting microporosity defect of type B.

Key wordsHK40 alloy    B micro-alloying    casting microporosity    boride    carbide
    
基金资助:*国家高技术研究发展计划项目2012AA03A511, 高等学校学科创新引智计划项目B12012及中央高校基本科研业务费项目FRF-TP-14-062A2资助
Alloy Cr Ni C Si Mn P S B Fe
HK40 23.29 19.23 0.35 1.34 1.41 0.025 0.004 0 Bal.
HK40-0.1B 23.96 18.90 0.38 - - - - 0.07 Bal.
HK40-0.4B 23.52 18.54 0.38 - - - - 0.36 Bal.
表1  铸态HK40系列合金的化学成分
图1  HK40合金铸件中的典型铸造疏松显微组织的OM像
图2  HK40合金铸件内部铸造疏松显微组织的SEM像
图3  HK40, HK40-0.1B和HK40-0.4B合金铸锭纵剖面显微组织的OM像
图4  HK40, HK40-0.1B和HK40-0.4B合金铸锭显微组织的OM像
图5  HK40和HK40-0.4B铸态合金萃取相的XRD谱
图6  HK40, HK40-0.1B和HK40-0.4B铸态合金枝晶间显微组织的SEM-BSE像
图7  HK40和HK40-0.4B合金相萃取后枝晶间析出相的SEM像
图8  HK40和HK40-0.4B铸态合金在不同温度保温15 min淬火后的显微组织的OM像
[1] Whittaker M, Wilshire B, Brear J. Mater Sci Eng, 2013; A580: 391
[2] Navaei A, Eslami-Farsani R, Abbasi M. Int J Min Mater, 2013; 20: 354
[3] Kim Y, Lee D, Jeong H K, Lee Y T, Jang H. J Mater Eng Perform, 2010; 19: 700
[4] Sava? ?, Kayikci R. Mater Des, 2007; 28: 2224
[5] Li J L, Chen R S, Ma Y Q, Ke W. J Mater Sci Technol, 2014; 30: 991
[6] Fu H D, Zhang Z H, Wu X S, Xie J X. Intermetallics, 2013; 35: 67
[7] Roy S, Suwas S, Tamirisakandala S, Miracle D B, Srinivasan R. Acta Mater, 2011; 59: 5494
[8] Wang X P, Zheng Y R, Xiao C B, Wang B L, Han Y F. J Aeronaut Mater, 2000; 20(2): 21 (汪小平, 郑运荣, 肖程波, 王蓓蕾, 韩雅芳. 航空材料学报, 2000; 20(2): 21)
[9] Da Silva Costa A M, Nunes C A, Baldan R, Coelho G C. J Mater Eng Perform, 2014; 23: 819
[10] Zhu Y X, Zhang S N, Xu L Y, Tong Y J, Ning X Z, Liu Z Z, Hou C P, Bi J. Acta Metall Sin, 1985; 21: A1 (朱耀宵, 张顺南, 徐乐英, 佟英杰, 宁秀珍, 刘泽洲, 候翠萍, 毕 敬. 金属学报, 1985; 21: A1)
[11] Coutsouradis D, Davin A, Lamberigts M. Mater Sci Eng, 1987; 88: 11
[12] Song R K, Zhang M C, Du C Y, Dong J X. Rare Met Mater Eng, 2014; 43: 1628 (宋若康, 张麦仓, 杜晨阳, 董建新. 稀有金属材料与工程, 2014; 43: 1628)
[13] Kaya A A. Mater Charact, 2002; 49: 23
[14] Gao Y, Yang L L, Zheng L J, Zhang H. J Beijing Univ Aeronaut Astronaut, 2010; 36: 1217 (高 永, 杨莉莉, 郑立静, 张 虎. 北京航空航天大学学报, 2010; 36: 1217)
[15] Luan J H, Jiao Z B, Chen G, Liu C T. J Alloys Compd, 2014; 602: 235
[16] Yang C, Jiang H, Hu D, Huang A, Dixon M. Scr Mater, 2012; 67: 85
[17] Peng Y C, Jin H J, Liu J H, Li G L. Mater Sci Eng, 2011; A529: 321
[18] Hufenbach J, Kunze K, Giebeler L, Gemming T, Wendrock H, Baldauf C, Kühn U, Hufenbach W, Eckert J. Mater Sci Eng, 2013; A586: 267
[19] Li J H, Li Q, Zhang F C, Liu S, Mao L, Hu B C, Yang Z N. Mater Lett, 2015; 153: 70
[20] Yang C, Hu D, Huang A, Dixon M. Intermetallics, 2013; 32: 64
[21] Yan B C, Zhang J, Lou L H. Mater Sci Eng, 2008; A474: 39
[22] Qiao G W, Wang D H, Cao Z B. Acta Metall Sin, 1986; 22: A345 (乔桂文, 王德和, 曹智本. 金属学报, 1986; 22: A345)
[23] Shahrooz N, Reza G. Mater Sci Eng, 2007; A452-453: 445
[24] Hu D. Intermetallics, 2001; 9: 1037
[25] Jiang Z G, Chen B, Ma Y C, Zhao X J, Liu K, Li Y Y. Acta Metall Sin, 2007; 43: 487 (江治国, 陈 波, 马颖澈, 赵秀娟, 刘 奎, 李依依. 金属学报, 2007; 43: 487)
[26] Zhou X Y, Li P Y, Yang Y, Liu Y H. J Funct Mater, 2006; 37(suppl): 596 (周细应, 李培耀, 杨 愈, 刘延辉. 功能材料, 2006; 37(增刊): 596)
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[4] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[5] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[6] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[7] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[9] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[10] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[11] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[12] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[13] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.