Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1435-1440    DOI: 10.11900/0412.1961.2015.00125
  本期目录 | 过刊浏览 |
冷却速率和高径比对钛基非晶复合材料力学性能的影响*
牟娟,王东梅,王沿东()
东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES
Juan MU,Dongmei WANG,Yandong WANG()
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110819
引用本文:

牟娟,王东梅,王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响*[J]. 金属学报, 2015, 51(12): 1435-1440.
Juan MU, Dongmei WANG, Yandong WANG. EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES[J]. Acta Metall Sin, 2015, 51(12): 1435-1440.

全文: PDF(954 KB)   HTML
摘要: 

通过制备不同尺寸的Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料样品, 研究了冷却速率和高径比对内生枝晶相增强钛基非晶复合材料力学性能的影响. 随着制备过程中冷却速率的降低, 非晶复合材料中枝晶相的尺寸逐渐增大, 同时枝晶相熟化的现象也趋于明显. 在力学性能方面表现为非晶复合材料的强度降低而塑性增强. 与以往非晶复合材料性能对高径比比较敏感所不同的是, 本工作中的Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料的力学性能对高径比的变化并不敏感, 原因在于晶态相的存在以及其中的形变诱发马氏体相变行为的发生对非晶复合材料内部应力分布的调节.

关键词 非晶复合材料力学性能冷却速率高径比    
Abstract

Amorphous alloy composite is designed to prevent rapid propagation of shear bands in amorphous phase by introducing the second crystalline phase, which can improve the plasticity of alloy. In situ formed amorphous alloy composites have attracted much interest due to excellent properties and extensive application prospect, especially the dendrite reinforced amorphous alloy composite with excellent tensile plasticity. Recent studies show that the plastic deformation behavior of amorphous alloy composite is not only related to the mechanical properties of the crystalline phase, such as elastic modulus, but also with the size, volume fraction and morphology of the crystalline phase. In addition, the mechanical properties, especially the plastic deformation ability, of amorphous alloys are closely related to topological morphology of the samples, such as aspect ratio. For the amorphous alloy composite, the relationship between mechanical properties and topological morphology of the samples are of interest. In this work, by adjusting preparation process and size of the samples, the effect of cooling rates and aspect ratios on the mechanical properties of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites were systematically studied. As decreasing the cooling rate during the preparation process, the sizes of dendrites in the amorphous alloy composites increases. And the crystalline phase presents evolution from branchlets to coarse dendrite. As the cooling rate decreases, strength of the composite decreases while plasticity increases. Moreover, different from the previous reports, the mechanical properties of amorphous alloy composite are not sensitive to the aspect ratio. It is attributed to the existing of the dendrites phase and deformation-induced phase transformation in the dendrites, which may adjust stress distribution of the amorphous alloy composites during deformation process.

Key wordsamorphous alloy composite    mechanical property    cooling rate    aspect ratio
    
基金资助:*国家自然科学基金项目51301034 和51434008 及教育部基本科研业务费项目N141004001 和L1502026 资助
图1  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品的XRD谱
图2  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品的SEM像
Diameter Area Ti Zr Ni Cu
mm
3 Matrix 41.43 42.46 5.70 10.41
Dendrite 59.42 37.91 0.38 2.29
5 Matrix 43.59 41.88 4.98 9.55
Dendrite 53.33 39.25 2.51 4.90
8 Matrix 40.14 43.07 5.86 10.94
Dendrite 58.58 37.60 1.07 2.75
表1  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品的EDS分析结果
图3  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品的DSC曲线
图4  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径和高径比样品的压缩应力-应变曲线
Diameter Tg / ℃ Tx / ℃ Crystallization
/ mm entropy / ( Jg)
3 340.5 378.2 -33.60
5 362.0 379.5 -29.62
8 356.4 377.1 -29.96
表2  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品的热力学数据
图5  不同高径比的Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料的力学性能随着样品直径的变化曲线
图6  不同直径的Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料的力学性能随高径比的变化
图7  Ti45.7Zr33Ni2.9Cu5.9Be12.5非晶复合材料不同直径样品断裂表面的SEM像
[1] Li Y, Poon S, Shiflet G, Xu J, Kim D, Loffler J. MRS Bull, 2007; 32: 624
[2] Inoue A, Zhang W, Tsurui T, Yavari A, Greer A. Philos Mag Lett, 2005; 85: 221
[3] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901
[4] Hofmann D, Suh J, Wiest A, Duan G, Lind M, Demetriou M, Johnson W. Nature, 2008; 451: 1085
[5] Choi-Yim H, Busch R, Koster U, Johnson W. Acta Mater, 1999; 47: 2455
[6] Eckert J, Das J, Pauly S, Duhamel C. J Mater Res, 2007; 22: 285
[7] Schuh C, Hufnagel T, Ramamurty U. Acta Mater, 2007; 55: 4067
[8] Deng S T, Diao H, Chen Y L, Yan C, Zhang H F, Wang A M, Hu Z Q. Scr Mater, 2011; 64: 85
[9] Zhang B, Fu H M, Zhu Z Z, Wang A M, Li H, Dong C, Hu Z Q, Zhang H F. Mater Sci Eng, 2012; A540: 207
[10] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278
[11] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[12] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905
[13] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E. Nat Mater, 2007; 6: 735
[14] Jang D, Greer J R. Nat Mater, 2010; 9: 215
[15] Murray J L. Phase Diagrams of Binary Titanium Alloys. Novelty: ASM International, 1987: 1
[16] Donachie M J. Titanium: a Technical Guide. Novelty: ASM International, 2000: 1
[17] Ferguson I. Technical Report 2438-1. Abingdon: United Kingdom Atomic Energy Assoc, 1976: 1
[18] Mu J, Zhu Z W, Su R, Wang Y, Zhang H F, Ren Y. Acta Mater, 2013; 61: 5008
[19] Scherrer P. G?ttinger Nachrichten, 1918; 2: 98
[20] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W. Proc Natl Acad Sci, 2008; 105: 20136
[21] Chen G, Cheng J L, Liu C T. Intermetallics, 2012; 28: 25
[22] Lee C J, Huang J C, Nieh T G. Appl Phys Lett, 2007; 91: 161913
[23] Oh Y S, Kim C P, Lee S, Kim N J. Acta Mater, 2011; 59: 7277
[24] Inoue A. Mater Trans JIM, 1995; 36: 866
[25] Johnson W. MRS Bull, 1999; 24: 42
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.