Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1349-1355    DOI: 10.11900/0412.1961.2015.00117
  本期目录 | 过刊浏览 |
双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*
强少明1,江来珠2,李劲1,刘天伟3,吴艳萍3,蒋益明1()
2 宝钢有限公司研发中心, 上海 201900
3 中国工程物理研究院表面物理与化学国家重点实验室, 绵阳 621907
EVALUATION OF INTERGRANULAR CORROSION SUSCEPTIBILITY OF 11Cr FERRITIC STAINLESS STEEL BY DL-EPR METHOD
Shaoming QIANG1,Laizhu JIANG2,Jin LI1,Tianwei LIU3,Yanping WU3,Yiming JIANG1()
1 Department of Materials Science, Fudan University, Shanghai 200433
2 Research and Development Center, Baosteel Co. Ltd., Shanghai 201900
3 National Key Laboratory for Surface Physics and Chemistry Laboratory, Chinese Academy of Engineering Physics, Mianyang 621907
引用本文:

强少明,江来珠,李劲,刘天伟,吴艳萍,蒋益明. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*[J]. 金属学报, 2015, 51(11): 1349-1355.
Shaoming QIANG, Laizhu JIANG, Jin LI, Tianwei LIU, Yanping WU, Yiming JIANG. EVALUATION OF INTERGRANULAR CORROSION SUSCEPTIBILITY OF 11Cr FERRITIC STAINLESS STEEL BY DL-EPR METHOD[J]. Acta Metall Sin, 2015, 51(11): 1349-1355.

全文: PDF(1116 KB)   HTML
摘要: 

利用TEM, EDS和SAED等分析方法, 研究了11Cr 铁素体不锈钢409L在600 ℃敏化下析出物特性, 并将双环电化学动电位再活化法(DL-EPR)用于评价409L钢的晶间腐蚀敏感性, 通过研究DL-EPR的扫描速率、介质成分、介质温度对测试结果的影响, 对该方法进行了优化, 并用该优化法研究了敏化处理对409L钢晶间腐蚀敏感性的影响. 结果表明, 敏化的409L钢发生晶间腐蚀是由于M23C6沿晶界析出. 在最优化条件下, DL-EPR法能定量评价409L钢的晶间腐蚀敏感性且具有良好的重复性. 随敏化处理时间延长, 沿晶界析出的M23C6增多, 晶间腐蚀敏感性也随之增强.

关键词 11Cr铁素体不锈钢双环电化学动电位再活化法晶间腐蚀M23C6    
Abstract

Ferritic stainless steel (FSS) containg (11%~13%)Cr with low C and N has excellent comprehensive performances and thus can be widely applied in extensive fields such as automobile exhaust systems, containers, buses and so on. Among them, 409L steel containing 11%Cr has been increasingly used in applications for tail pipes in the cold end parts of automobile exhaust systems because of its good corrosion resistance and moderate price. During the manufacture process for these tail pipes, improper heat treatments and welding operations cause the precipitation of some detrimental phases such as carbides, nitrides, which leads to a reduction on the resistance to intergranular corrosion (IGC) due to the presence of Cr-depleted zone in the grain boundaries. In this work, the precipitates in grain boundaries of 409L steel aged at 600 ℃ were investigated using TEM, EDS and SAED. The double loop-electrochemical potentiokinetic reactivation (DL-EPR) method was extended for evaluating the IGC susceptibility of 409L steel. The operating conditions of the DL-EPR test for 409L steel were optimized by investigating the influences of the main test parameters, such as scanning rate, solution composition, solution temperature. The experimental results showed that the IGC occurred in aged 409L steel due to the precipitation of M23C6 along grain boundaries. The optimized DL-EPR test could evaluate the IGC susceptibility of 409L steel quantitatively with high reproducibility. With the increase of aging time, much more M23C6 precipitated along grain boundaries, which resulted in 409L steel more susceptible to IGC.

Key words11Cr ferritic stainless steel    double loop-electrochemical potentiokinetic reactivation    intergranular corrosion    M23C6
    
基金资助:* 国家自然科学基金项目51131008 和511340101, 国家科技支撑课题项目2012BAE04B00以及国家教育部博士点专项基金项目20120071110013 资助
图1  Thermo-Calc模拟计算得到的409L钢中平衡态的各相含量
图2  409L钢600 ℃敏化4 h前后的晶界形貌的TEM像、EDS分析和SAED谱
图3  扫描速率为1.667 mV/s 时KSCN浓度对409L钢在30 ℃的0.5%H2SO4溶液中DL-EPR测试结果的影响
图4  扫描速率对409L钢在30 ℃的0.5%H2SO4+0.002%KSCN溶液中DL-EPR测试结果的影响
图5  扫描速率为1.667 mV/s时溶液温度对409L钢在0.5%H2SO4+0.002%KSCN溶液中DL-EPR测试结果的影响
图6  在最优化条件下409L钢在600 ℃敏化不同时间后的DL-EPR曲线
Sample Ia / (mAcm-2) Ir / (mAcm-2) Ra / %
As-received 28.40 0 0
Aged for 0.5 h 32.61 2.61 8.00
Aged for 4 h 32.40 6.29 19.41
Aged for 10 h 27.18 8.63 31.75
表1  409L钢在600 ℃敏化不同时间后在最优化条件下的DL-EPR测试结果
图7  最优化条件下下409L钢DL-EPR测试后的OM像
[1] Pardo A, Merion M C, Coy A E, Viejo F, Carboneras M, Arrabal R. Acta Mater, 2007; 55: 2239
[2] Nichol T J, Davis J A. Intergranular Corros Stainless Alloy, 1978; 656: 179
[3] Devine T M, Drummond B J. Corrosion, 1982; 38: 327
[4] You X M, Jiang Z H, Li H B, Shen M H, Cao Y. Chin Metall, 2007; (11): 16 (游香米, 姜周华, 李花兵, 申明辉, 曹 阳. 中国冶金, 2007; (11): 16)
[5] Gate J D, Jago R A. Mater Sci Technol, 1987; 3: 450
[6] Fritz J D, Franson I A. Mater Perform, 1997; 36(8): 57
[7] Lakshminarayanan A K, Balasubramanian V. Mater Des, 2010; 31: 4592
[8] Kim J K, Lee B J, Lee B H, Kim Y H, Kim K Y. Scr Mater, 2009; 61: 1133
[9] Kim J K, Kim Y H, Lee J S, Kim K Y. Corros Sci, 2010; 52: 1847
[10] Warren D. Corrosion, 1959; 15(4): 63
[11] Guarnieri G J, Miller J, Vawter F J. Trans ASM, 1950; 42: 981
[12] Pohl M, Storz O, Glogowski T. Mater Charact, 2007; 58: 65
[13] Tseng C C, Shen Y, Thompson S W, Mataya M C, Krauss G. Metall Mater Trans, 1994; 25A: 1147
[14] Xiao J M. Metallography Issues of Stainless Steels. 2nd Ed., Beijing: Metallurgy Industry Press, 2006: 39; 166; 171 (肖纪美. 不锈钢的金属学问题. 第二版, 北京: 冶金工业出版社, 2006: 39; 166; 171)
[15] Gui L F,Wu M D,Zhao Y. Handbook of Materials Testing for Mechanical Engineering. Shenyang: Liaoning Science and Technology Press, 2002: 158 (桂立丰,吴民达,赵 源. 机械工程材料测试手册. 沈阳: 辽宁科学技术出版社, 2002: 158)
[16] Huey W R. Trans Am Soc Steel Treat, 1930; 18: 1126
[17] Streicher M A. Corros Sci, 1969; 9: 53
[18] Frangini S, Mignone A. Corrosion, 1992; 48: 75
[19] Gong J, Jiang Y M, Deng B, Xu J L, Hu J P, Li J. Electrochim Acta, 2010; 55: 5077
[20] Deng B, Jiang Y M, Xu J L, Sun T, Gao J, Zhang L H, Zhang W, Li J. Corros Sci, 2010; 52: 969
[21] Gao J, Jiang Y M, Deng B, Zhang W, Zhong C, Li J. Corros Sci, 2009; 54: 5830
[22] Zhong C, Liu F, Wu Y T, Le J J, Liu L, He M F, Zhu J C, Hu W B. J Alloys Compd, 2012; 520: 11
[23] Le J J, Liu L, Liu F, Deng Y D, Zhong C, Hu W B. J Alloys Compd, 2014; 610: 173
[24] Zhong C, He M F, Liu L, Wu Y T, Chen Y J, Deng Y D, Shen B, Hu W B. J Alloys Compd, 2010; 504: 377
[25] Zhong C, He M F, Liu L, Chen Y J, Shen B, Wu Y T, Deng Y D, Hu W B. Surf Coat Technol, 2010; 205: 2412
[26] Jin W S, Lang Y P, Rong F, Sun L J. J Chin Soc Corros Prot, 2007; 27: 54 (金维松, 郎宇平, 荣 凡, 孙力军. 中国腐蚀与防护学报, 2007; 27: 54)
[27] Chen F C, Hu S L. Comput Appl Chem, 2001; 18: 433 (陈范才, 胡石林. 计算机与应用化学, 2001; 18: 433)
[28] Clarke W L, Cowan R L, Wakler W L. Intergranular Corros Stainless Alloy, 1978; 656: 99
[29] Cihal V. Corros Sci, 1980; 20: 737
[30] Mignone A, Borello A, Barbera A L. Corrosion, 1982; 38: 390
[31] Lee J B. Corrosion, 1986; 42: 106
[32] Li S S. Corros Sci Technol Prot, 2000; 12: 288 (李神速. 腐蚀科学与防护技术, 2000; 12: 288)
[33] Kim J K, Kim Y H, Uhm S H, Lee J S, Kim K Y. Corros Sci, 2009; 51: 2716
[34] Amadou T, Braham C, Sidhom H. Metall Mater Trans, 2004; 35A: 3513
[1] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[2] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[3] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[4] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[5] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[6] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[7] 莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.
[8] 彭志方,任文,杨超,陈方玉,刘鸿国,彭芳芳,梅青松. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系*[J]. 金属学报, 2015, 51(11): 1325-1332.
[9] 李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50(11): 1357-1366.
[10] 李祥亮,陈江华,刘春辉,冯佳妮,王时豪. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J]. 金属学报, 2013, 49(2): 243-250.
[11] 郭丽芳 李旭晏 孙涛 徐菊良 李劲 蒋益明. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48(12): 1503-1509.
[12] 李 海 潘道召 王芝秀 郑子樵. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46(4): 494-499.
[13] 徐菊良 邓博 孙涛 李劲 蒋益明. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性[J]. 金属学报, 2010, 46(3): 380-384.
[14] 韩冬 蒋益明 邓博 张丽华 张伟 李劲. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45(8): 919-923.
[15] 谢建辉;吴荫顺;朱日彰. 植入不锈钢腐蚀疲劳过程中的晶间腐蚀[J]. 金属学报, 1997, 33(3): 304-308.