Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1111-1120    DOI: 10.11900/0412.1961.2015.00105
  本期目录 | 过刊浏览 |
电子束功率对TC4合金刚性拘束热自压连接、接头组织和力学性能的影响
邓云华1,2,关桥1,2(),陶军2,吴冰2,王西昌2
2 北京航空制造工程研究所, 北京 100024
EFFECT OF ELECTRON BEAM POWER ON TC4 ALLOY RIGID RESTRAINT THERMAL SELF-COMPRESSING BONDING, MICRO- STRUCTURE AND MECHANICAL PROPERTIES OF JOINTS
Yunhua DENG1,2,Qiao GUAN1,2(),Jun TAO2,Bing WU2,Xichang WANG2
1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
引用本文:

邓云华,关桥,陶军,吴冰,王西昌. 电子束功率对TC4合金刚性拘束热自压连接、接头组织和力学性能的影响[J]. 金属学报, 2015, 51(9): 1111-1120.
Yunhua DENG, Qiao GUAN, Jun TAO, Bing WU, Xichang WANG. EFFECT OF ELECTRON BEAM POWER ON TC4 ALLOY RIGID RESTRAINT THERMAL SELF-COMPRESSING BONDING, MICRO- STRUCTURE AND MECHANICAL PROPERTIES OF JOINTS[J]. Acta Metall Sin, 2015, 51(9): 1111-1120.

全文: PDF(6815 KB)   HTML
摘要: 

以电子束为热源, 采用不同的束流功率对TC4钛合金进行刚性拘束热自压连接, 测试分析了连接接头界面焊合质量、组织和力学性能. 同时, 在实验基础上对刚性拘束热自压连接热应力应变过程进行有限元数值分析, 实验研究和数值模拟相结合分析了束流功率对连接接头界面焊合质量以及组织和性能的影响规律. 结果表明, 束流功率增加, 加热温度、高温区停留时间、高温区体积以及界面金属压缩塑性变形随之增加, 促进界面两侧原子扩散, 界面焊合质量提高. 束流功率显著影响连接接头组织, 小束流功率加热时能获得组织均匀的连接接头, 大束流功率加热时, 界面加热区产生针状a相, 且a/a相界取向差主要位于59.85°附近, 呈现出在同一b相晶粒内部产生的特点. 连接接头的力学性能受界面焊合率和加热区组织共同影响, 束流较小时, 界面未焊合缺陷多, 结合强度低; 束流较大时, 加热区发生显著组织转变, 晶粒粗大, 接头塑性差. 束流功率为330 W时, 接头组织均匀且界面焊合质量好, 获得综合力学性能优异的连接接头.

关键词 热自压连接热应力-应变过程束流功率显微组织力学性能    
Abstract

Rigid restraint thermal self-compressing bonding is a new solid-state bonding process. During the process, localized non-melted heating method is employed to heat the butted interface of the rigid restrained plates to be bonded. Under the localized heating, materials close to the butted interface are expanded. However, due to the existence of surrounding cool metals and rigid restraints, the expansion of the high temperature materials is restrained and thus, a compressive pressure is developed which compresses the high temperature metals near the bond interface and facilitates the atom diffusion between butt-weld specimens to produce a permanent solid-state joint. Utilizing the localized stress-strain field to accomplish atomic bonding, this process can avoid the use of external forces on which diffusion bonding and other solid-state bonding methods rely. Previous study has proven the feasibility of this process to join titanium alloys. In present work, the effect of beam power on bond interface, microstructure and mechanical properties of the TC4 joints bonded at different beam powers were analyzed through the OM observation, EBSD analysis, mechanical property test and fracture morphology analysis. Meanwhile, in order to reveal the mechanism about the effect of beam power on bond interface, the experiment study on microstructure and mechanical property and finite element analysis on present bonding were conducted to investigate the effect of beam power on the thermal stress-strain process during bonding. The results show that with the increase of beam power, the heating temperature, dwell time over high temperature, volume of materials with high temperature and the compressive plastic strain increase which promote the atom diffusion and thus bond quality of the interface is improved. At low beam power, the microstructure of the joints is homogeneous, while coarse grain with acicular a phase forms in the joint when the beam power is high. Mechanical properties of the joint are dependent on bond rate and microstructure. When the beam power is lower or higher, the compressive mechanical properties of the joints are poor because of the poor bonding quality of the interface or the coarse microstructure developed in the joint. Good comprehensive mechanical properties are obtained at the beam power of 330 W.

Key wordsthermal self-compressing bonding    thermal stress-strain process    beam power    microstructure    mechanical property
    
基金资助:*国家自然科学基金资助项目50935008
图1  TC4合金刚性拘束热自压连接示意图
Specimen Ub kV Ib mA P W tH s
1 150 1.8 270 150
2 150 2.2 330 150
3 150 5.2 780 150
表1  刚性拘束热自压连接工艺参数
图 2  拉伸测试试样尺寸示意图
图3  不同束流功率TC4合金刚性拘束热自压连接接头界面
图4  TC4合金母材的显微组织
图5  母材和不同束流功率TC4合金连接接头界面区晶粒取向分布图
图6  TC4母材和连接接头界面区a相的取向差分布
图7  不同束流功率TC4合金接头拉伸断裂位置与断口形貌
Specimen P W sb MPa s0.2 MPa d % Fracture location
Base metal - 999.3 944.7 17.4 -
1 270 405.1 - ≈0 Interface
2 330 1029.0 964.3 16.2 Base metal
3 780 997.2 901.5 3.5 Heated zone
表2  不同束流功率TC4合金母材及接头的力学性能
图8  对接界面附近网格划分
图9  带状Gauss热源示意图
图10  热循环和残余应力的数值模拟与实验结果对比
图11  不同束流功率TC4合金对接面不同位置的热循环
图12  不同束流功率连接时TC4合金中截面上的温度分布
图13  不同束流功率TC4合金对接面中心点(P2)的横向应力和应变演变
图14  时间约为10 s时不同束流功率下TC4合金的温度分布
图15  不同束流功率下压应力达到峰值的时刻及相应温度分布
[1] Kou S. Welding Metallurgy. 2nd Ed., New Jersey: John Wiley & Sons, 2003: 170
[2] Kou S. JOM, 2003; 55(6): 37
[3] Liu J, Gao X L, Zhang L J, Zhang J X. J Mater Eng Perform, 2014; 20: 319
[4] Milella P P. Fatigue and Corrosion in Metals. Milan: Springer-Verlag, 2013: 625
[5] Deng Y H, Guan Q, Wu B, Wang X C, Tao J. Mater Lett, 2014; 129: 43
[6] Deng Y H, Guan Q. Mater Lett, 2015; 146: 1
[7] China Aeronautical Materials Handbook Edit Committee. China Aeronautical Materials Handbook. Vol.4, Beijing: China Standard Publishing Company, 2002: 9 (中国航空材料手册编委会. 航空材料手册. 第四卷, 北京: 中国标准出版社, 2002: 9)
[8] Каракоэов Э С,translated by Zhai S F. Diffusion Bonding of Titanium Alloy. Beijing: National Defense Industry Press, 1986: 36 (Каракоэов Э С著,翟书汾译. 钛合金的扩散焊接. 北京: 国防工业出版社, 1986: 36)
[9] Wu G Q, Li Z F, Luo G X, Li H Y, Huang Z. Mater Sci Eng, 2007; A452-453: 529
[10] Liu H, Nakata K, Zhang J X, Yamamoto N, Liao J. Mater Charact, 2012; 65: 1
[11] Mills K C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys. London: Woodhead Publishing Ltd, 2002: 217
[12] Lacki P, Adamus K. Comput Struct, 2011; 89: 977
[13] Luo Y, Liu J H, Ye H. Vacuum, 2010; 84: 857
[14] Rouquette S, Guo J, Le P. Int J Therm Sci, 2007; 46: 128
[15] Liu C, Wu B, Zhang J X. Metall Mater Trans, 2010; 41B: 1129
[16] Lacki P, Adamus K, Wieczorek P. Comput Mater Sci, 2014; 94: 17
[17] Cai Y. Master Thesis, Nanjing University of Aeronautics and Astronautics, 2009 (蔡 云. 南京航空航天大学硕士学位论文, 2009)
[18] Guan Q, Cao Y. Weld World, 1999; 43(1): 14
[19] Li J. PhD Dissertation, Beijing University of Technology, 2004 (李 菊. 北京工业大学博士学位论文, 2004)
[20] Ma R F, Li M Q, Li H. Sci China Technol Sci, 2012; 55: 2420
[21] Shen J J. Master Thesis, Harbin Institute of Technology, 2007 (沈俊军. 哈尔滨工业大学硕士学位论文, 2007)
[22] Hill A, Wallach E R. Acta Meter, 1989; 19: 2425
[23] Orhan N, Aksoy M, Eroglu M. Mater Sci Eng, 1999; A271: 458
[24] Mehrer H.Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Process. Berlin: Springer and Verlag, 2007: 310
[25] Zhang Z,Wang Q J,Mo W. Metallurgy and Heat Treatment of Titanium. Beijing: Metallurgical Industry Press, 2009: 87 (张 翥,王群骄,莫 畏. 钛的金属学和热处理. 北京: 冶金工业出版社, 2009: 87)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.