Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1391-1399    DOI: 10.11900/0412.1961.2015.00099
  本期目录 | 过刊浏览 |
TC4钛合金搅拌摩擦焊厚度方向的显微组织*
姬书得1(),温泉1,马琳1,李继忠2,张利1
2 北京航空制造工程研究所, 北京 100024
MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT
Shude JI1(),Quan WEN1,Lin MA1,Jizhong LI2,Li ZHANG1
1 Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
引用本文:

姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
Shude JI, Quan WEN, Lin MA, Jizhong LI, Li ZHANG. MICROSTRUCTURE ALONG THICKNESS DIRECTION OF FRICTION STIR WELDED TC4 TITANIUM ALLOY JOINT[J]. Acta Metall Sin, 2015, 51(11): 1391-1399.

全文: PDF(1769 KB)   HTML
摘要: 

采用搅拌摩擦焊(friction stir welding, FSW)实现了2 mm厚TC4钛合金连接, 结合数值模拟结果研究了温度分布对焊缝沿厚度方向显微组织特征和接头力学性能的影响规律. 结果表明, 当焊接速率为50 mm/min且转速为300 r/min时, 靠近焊缝表面的材料温度峰值超过b相变温度. 随着到焊缝表面距离的增加温度峰值逐渐变小, 靠近焊缝底部的材料未超过b相变温度. 在温度峰值超过b相变的焊缝区域, 显微组织是由初生a相、板条状a相和剩余转变b相组成, 且焊缝内部的板条状a相尺寸大于近表面区域. 焊缝底部受到动态再结晶作用, 呈现尺寸较小的ab双相组织, 且b相在a相基体上分布更均匀. 当转速提高到350 r/min时, 沿焊缝厚度方向上的超过b相变温度的区域变宽, 板条状a相所占面积和尺寸增大, 组织中出现板条状a相丛. 取向不同的板条状a相散乱分布于组织中, 阻碍裂纹扩展, 利于接头的抗拉强度.

关键词 搅拌摩擦焊TC4钛合金温度峰值显微组织抗拉强度    
Abstract

As a solid state technology, friction stir welding (FSW) has been used to join titanium alloys for avoiding the fusion welding defects. So far, many previous studies have attempted to elucidate the microstructure characteristics and evolution during the FSW process of titanium alloy, but few are about the mechanism of microstructure transformation along the thickness direction of joint. For solving this problem, in this work, 2 mm thick TC4 titanium alloy is successfully welded by FSW. On the basis of numerical simulation, the effects of temperature distribution on the microstructure along the weld thickness direction and the tensile strength of welding joint were investigated. The results show that the peak temperatures of material close to weld surface exceed b phase transus temperature under the rotational speed of 300 r/min and the welding speed of 50 mm/min. With the increase of distance away from the weld surface, the peak temperature decreases. The peak temperature of weld bottom near the backing board is difficult to be higher than b phase transus temperature owing to quick heat radiation. The region, where the peak temperature is higher than b phase transus temperature, consists of primary a, lath-shape a and residual b phases. The size of lath-shape a inside the weld is larger than that near the weld surface. Primary a and b phases with smaller size are attained in the weld bottom owing to the dynamic recrystallization, and the distribution of b phase on primary a matrix is more homogeneous. When the rotational speed reaches 350 r/min, the area where the peak temperature is higher than b phase transus temperature becomes wider along the thickness direction, which makes the size and quantity of lath-shape a phase increase and then the lath-shape a clump appears. Lath-shape a phase with different orientations hinder the propagation of crack and be beneficial for the tensile strength of FSW joint.

Key wordsfriction stir welding    TC4 titanium alloy    peak temperature    microstructure    tensile strength
    
基金资助:* 国家自然科学基金项目51204111 及辽宁省自然科学基金项目2013024004 和2014024008 资助
图1  拉伸试样尺寸示意图
图2  模拟用网格划分
图3  钛合金热物性参数与温度间的关系
图4  钛合金的屈服强度与温度的关系
图5  模型散热边界条件示意图
图6  转速为300和350 r/min时TC4钛合金搅拌摩擦焊测温点的模拟与NiCr-NiSi热电偶测温实验热循环曲线
图7  不同转速下TC4钛合金接头的截面温度分布
图8  不同转速下TC4钛合金接头的宏观结构和截面形貌
图9  TC4钛合金母材的SEM像
图10  转速为350 r/min时TC4钛合金焊接接头板厚方向的SEM像
图11  TC4钛合金焊接接头微观组织转变机理示意图
图12  转速为300 r/min时TC4钛合金焊接接头板厚方向的SEM像
图13  不同转速下TC4钛合金焊接接头的断裂位置
图14  转速为300 r/min时TC4钛合金焊接接头断口形貌的SEM像
图15  转速为350 r/min时TC4钛合金焊接接头断口形貌的SEM像
[1] Luo L, Shen Y F, Li B, Hu W Y. Acta Metall Sin, 2013; 49: 996 (骆 蕾, 沈以赴, 李 博, 胡伟叶. 金属学报, 2013; 49: 996)
[2] Leng C Y, Zhou R, Zhang X, Lu D H, Liu H X. Acta Metall Sin, 2009; 45: 764 (冷崇燕, 周 荣, 张 旭, 卢德宏, 刘洪喜. 金属学报, 2009; 45: 764)
[3] Das D K, Trivedi S P. Mater Sci Eng, 2004; A367: 225
[4] Xiong Y M, Zhu S L, Wang F H. Acta Metall Sin, 2004; 40: 768 (熊玉明, 朱圣龙, 王福会. 金属学报, 2004; 40: 768)
[5] Esmaily M, Mortazavi S N, Todehfalah P, Rashidi M. Mater Des, 2013; 47: 143
[6] Zhang Y, Sato Y S, Kokawa H, Park S H C, Hirano S. Mater Sci Eng, 2008; A485: 448
[7] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[8] Threadgill P L, Leonard A J, Shercliff H R, Withers P J. Int Mater Rev, 2009; 54: 49
[9] Liu H J, Zhou L, Liu Q W. Mater Des, 2010; 31: 1650
[10] Zhou L, Liu H J, Liu P, Liu Q W. Scr Mater, 2009; 61: 596
[11] Wang W, Li Y, Wang Q J, Wang K S, Hai M N. Rare Met Mater Eng, 2014; 43: 1143 (王 文, 李 瑶, 王庆娟, 王快社, 海敏娜. 稀有金属材料与工程, 2014; 43: 1143)
[12] Zhou L, Liu H J, Liu Q W. Mater Des, 2010; 31: 2631
[13] Wang K S, Zhang X L, Shen Y, Xu K W. Rare Met Mater Eng, 2008; 37: 2045 (王快社, 张小龙, 沈 洋, 徐可为. 稀有金属材料与工程, 2008; 37: 2045)
[14] Li H K, Shi Q Y, Zhao H Y, Li T. Trans China Weld Inst, 2006; 27(11): 81 (李红克, 史清宇, 赵海燕, 李 亭. 焊接学报, 2006; 27(11): 81)
[15] He W, Du X P, Ma H Z, Hui X Y, Sun X F. Phys?Testing Chem? Anal?(Phys?Anal), 2014; 50A: 461 (何 伟, 杜小平, 马红征, 惠晓原, 孙晓峰. 理化检验-物理分册, 2014; 50A: 461)
[16] Wang T, Bai X F, Wang S M, Zhu B, Xia J H. J?Xi'an? Univ?Arts?Sci (Nat?Sci?Ed), 2013; 16: 80 (王 涛, 白新房, 王松茂, 朱 波, 夏金华. 西安文理学院学报(自然科学版), 2013; 16: 80)
[17] Wang H S. Rare Met Mater Eng, 1989; 3: 47 (王华森. 稀有金属材料与工程, 1989; 3: 47)
[18] Zhang X Y,Zhao Y Q. Titanium Alloy and Application. Beijing: Chemical Industry Press, 2005: 1 (张喜燕,赵永庆. 钛合金及应用. 北京: 化学工业出版社, 2005: 1)
[19] Chen S K, Tian Y W, Chang L, Miao Z, Xia J H. Rare Met Mater Eng, 2009; 38: 1916 (陈绍楷, 田弋纬, 常 璐, 苗 壮, 夏金华. 稀有金属材料与工程, 2009; 38: 1916)
[20] Homporová P, Poletti C, Stockinger M, Warchomicka F. J Laser Appl, 2012; 27: 1321
[21] Robert P. PhD Dissertation, Lulea University of Technology, 2002
[22] Zhang Z,Wang Q J,Mo W. Titanium Metallurgy and Heat Treatment. Beijing: Metallurgical Industry Press, 2009: 262 (张 翥,王群骄,莫 畏. 钛的金属学和热处理. 北京: 冶金工业出版社, 2009: 262)
[23] Qazi J I, Senkov O N, Rahim J, Genc A, Froes F H. Metall Mater Trans, 2001; 32A: 2453
[24] Xu W F, Liu J H, Luan G H, Dong C L. Acta Metall Sin, 2009; 45: 490 (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2009; 45: 490)
[25] Kitamura K, Fujii H, Iwata Y, Sun Y S, Morisada Y. Mater Des, 2013; 46: 348
[26] Wang D, Liu J, Xiao B L, Ma Z Y. Acta Metall Sin, 2010; 46: 589 (王 东, 刘 杰, 肖伯律, 马宗义. 金属学报, 2010; 46: 589)
[27] Kang J, Luan G H. Acta Metall Sin, 2011; 47: 224 (康 举, 栾国红. 金属学报, 2011; 47: 224)
[28] Sharma C, Dwivedi D K, Kumar P. Mater Des, 2012; 36: 379
[29] Liu H J, Hou J C, Guo H. Mater Des, 2013; 50: 872
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.