Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1092-1100    DOI: 10.11900/0412.1961.2015.00083
  本期目录 | 过刊浏览 | 高级检索 |
马氏体的分布对双相钢微观变形行为和力学性能的影响
邓洁,马佳伟,许以阳,沈耀()
EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  HTML  PDF(14130KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过工艺设计, 对工业20钢进行了分级淬火(SQ)和临界区退火(IA)热处理, 获得了马氏体体积分数相近、但马氏体分别呈离散分布和连续分布的2种双相钢. 对它们的拉伸/冲击力学性能进行了表征; 应用数字图像相关(DIC)方法获得双相钢的微观应变分布, 并结合表面微裂纹分析, 揭示了2种双相钢的不同变形断裂机制. SQ双相钢展现出较低的强度, 但具有更好的塑性与冲击韧性, 这源于铁素体较大变形松弛了马氏体在变形中产生的应力集中; 而IA双相钢中铁素体变形受到周围马氏体的阻碍, 铁素体相对小的变形不能有效松弛变形马氏体的应力, 使裂纹优先在马氏体中产生, 因而IA双相钢具有高强度和低塑性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  双相钢  微观结构  塑性变形  分级淬火  临界区退火  数字图像相关(DIC)    
Abstract: 

Investigation of the relationship between microstructure and microscopic deformation behavior of dual phase steel is very important for high property dual phase steel development. In this work, step quenching (SQ) and intercritical annealing (IA) heat treatments were optimized to produce dual phase steels of similar martensite volume fraction, but with respectively isolated and continuous martensite distribution. The tensile and dynamic fracture properties of dual phase steels were investigated. Strain distribution of steels was measured by digital image correlation (DIC) method. Combined with observations of microcracks/microvoids, different deformation and fracture mechanisms were revealed. Compared to IA steel, SQ steel has lower strength, but longer elongation and higher fracture toughness, and the latter were attributed to larger deformation in ferrites that results in more stress relaxation of martensite during deformation. While in IA steel, the deformation in ferrites is blocked by adjacent martensites, so that a relatively small strain of ferrite cannot effectively relax the stress in martensites, which resulted in higher plastic deformation in martensite than in SQ steel; therefore, cracks preferentially initiate in martensite, and IA steel exhibits higher strength and lower plasticity.

Key words:  dual phase steel    microstructure    plastic deformation    step quenching    intercritical annealing    digital image correlation (DIC)
                    发布日期:  2015-06-16      期的出版日期:  2015-09-16
基金资助: *国家重点基础研究发展计划项目2012CB619600和国家自然科学基金项目51471107资助
引用本文:    
邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS. Acta Metall, 2015, 51(9): 1092-1100.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00083  或          http://www.ams.org.cn/CN/Y2015/V51/I9/1092
图1  拉伸试样尺寸示意图
图2  SQ和IA双相钢热处理工艺示意图
图3  SQ和IA处理所得双相钢的OM像
图4  IA和SQ样品的拉伸曲线
Sample σ 0.2 / MPa σ b / MPa h ? / MPa δ / %
IA 558 1006 6656 7.2
SQ 420 840 4046 10.8
表1  2种材料的拉伸力学性能
图5  SQ和IA样品的拉伸断口SEM像
图6  SQ和IA样品的冲击断口SEM像
图7  SQ样品目标区域变形前的SEM像及叠加SEM像的断后等效应变分布图
图8  IA样品目标区域变形前SEM像及叠加SEM像的断后等效应变分布图
图9  SQ和IA样品中等效应变分布频率统计图
图10  SQ和IA样品断口附近的表面裂纹
[1] Rashid M. Annu Rev Mater Sci, 1981; 11(1): 245
[2] Ma M T,Wu B R. Dual Phase Steel-Physics & Mechanical Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1 (马鸣图,吴宝榕. 双相钢-物理和力学冶金. 第二版 , 北京: 冶金工业出版社, 2009: 1)
[3] Tian Z Q, Tang D, Jiang H T, Ma X L, Xu H X. Mater Mech Eng, 2009; 33(4): 1 (田志强, 唐 荻, 江海涛, 马小亮, 许洪汛. 机械工程材料, 2009; 33(4): 1)
[4] Gao L,Zhou Y M,Liu J L,Shen X D,Ren Z M. In: The Chinese Society for Metals ed., Proceeding 7th China Steel Conference, Beijing: Metallurgical Industry Press, 2009: 96 (高 丽,周月明,刘俊亮,沈小丹,任忠鸣. 见: 中国金属学会主编, 第七届中国钢铁年会论文集, 北京: 冶金工业出版社, 2009: 96)
[5] Tasan C, Hoefnagels J, Geers M. Scr Mater, 2010; 62: 835
[6] Byun T S, Kim I S. J Mater Sci, 1993; 28: 2923
[7] Gerbase J, Embury J D, Hobbs R M. In: Kot R A, Morris J W eds., Structure and Properties of Dual-Phase Steels, New York: TMS-AIME, 1979: 118
[8] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658
[9] Pierman A P, Bouaziz O, Pardoen T, Jacques P J, Brassart L. Acta Mater, 2014; 73: 298
[10] Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Mater Sci Eng, 2014; A604: 135
[11] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957
[12] Ahmad E, Manzoor T, Ziai M, Hussain N. J Mater Eng Perform, 2012; 21: 382
[13] Su Y, Gurland J. Mater Sci Eng, 1987; 95: 151
[14] Han Q, Kang Y, Hodgson P D, Stanford N. Scr Mater, 2013; 69: 13
[15] Kim N, Thomas G. Metall Trans, 1981; 12A: 483
[16] Xu Y Y, Deng J, Ge H Q, Shen Y. Mater Mech Eng, 2015; 39(6): 40 (许以阳, 邓 洁, 葛涵清, 沈 耀. 机械工程材料, 2015; 39(6): 40)
[17] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer-Verlag US, 2009: 119
[18] Pan B, Qian K, Xie H, Asundi A. Meas Sci Technol, 2009; 20(6): 1
[19] Kang J, Ososkov Y, Embury J D, Wilkinson D S. Scr Mater, 2007; 56: 999
[20] Kang J, Jain M, Wilkinson D S, Embury J D. J Strain Anal Eng Des, 2005; 40: 559
[21] Joo S H, Lee J K, Koo J M, Lee S, Suh D W, Kim H S. Scr Mater, 2013; 68: 245
[22] Heat Treatment Manual Editorial Committee in Heat Treatment Institute of Chinese Mechanical Engineering Society. Heat Treatment Manual (Vol.1). 3rd Ed., Beijing: China Machine Press, 2001: 131 (中国机械工程学会热处理专业学会《热处理手册》编委会.热处理手册(第一卷)工业基础. 第三版, 北京: 机械工业出版社, 2001: 131
[23] Bag A, Ray K K, Dwarakadasa E S. Metall Mater Trans, 1999; 30A: 1193
[24] Ghadbeigi H, Pinna C, Celotto S, Yates J. Mater Sci Eng, 2010; A527: 5026
[25] Shen H, Lei T, Liu J. Mater Sci Technol, 1986; 2(1): 28
[26] Woo W, Em V, Kim E Y, Han S, Han Y, Choi S H. Acta Mater, 2012; 60: 6972
[1] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[2] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[3] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[4] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[5] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[6] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[7] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[8] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[9] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[10] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[11] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[12] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[13] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[14] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[15] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed