Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1092-1100    DOI: 10.11900/0412.1961.2015.00083
  本期目录 | 过刊浏览 | 高级检索 |
马氏体的分布对双相钢微观变形行为和力学性能的影响
邓洁,马佳伟,许以阳,沈耀()
EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
全文: PDF(14130 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过工艺设计, 对工业20钢进行了分级淬火(SQ)和临界区退火(IA)热处理, 获得了马氏体体积分数相近、但马氏体分别呈离散分布和连续分布的2种双相钢. 对它们的拉伸/冲击力学性能进行了表征; 应用数字图像相关(DIC)方法获得双相钢的微观应变分布, 并结合表面微裂纹分析, 揭示了2种双相钢的不同变形断裂机制. SQ双相钢展现出较低的强度, 但具有更好的塑性与冲击韧性, 这源于铁素体较大变形松弛了马氏体在变形中产生的应力集中; 而IA双相钢中铁素体变形受到周围马氏体的阻碍, 铁素体相对小的变形不能有效松弛变形马氏体的应力, 使裂纹优先在马氏体中产生, 因而IA双相钢具有高强度和低塑性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 双相钢微观结构塑性变形分级淬火临界区退火数字图像相关(DIC)    
Abstract

Investigation of the relationship between microstructure and microscopic deformation behavior of dual phase steel is very important for high property dual phase steel development. In this work, step quenching (SQ) and intercritical annealing (IA) heat treatments were optimized to produce dual phase steels of similar martensite volume fraction, but with respectively isolated and continuous martensite distribution. The tensile and dynamic fracture properties of dual phase steels were investigated. Strain distribution of steels was measured by digital image correlation (DIC) method. Combined with observations of microcracks/microvoids, different deformation and fracture mechanisms were revealed. Compared to IA steel, SQ steel has lower strength, but longer elongation and higher fracture toughness, and the latter were attributed to larger deformation in ferrites that results in more stress relaxation of martensite during deformation. While in IA steel, the deformation in ferrites is blocked by adjacent martensites, so that a relatively small strain of ferrite cannot effectively relax the stress in martensites, which resulted in higher plastic deformation in martensite than in SQ steel; therefore, cracks preferentially initiate in martensite, and IA steel exhibits higher strength and lower plasticity.

Key wordsdual phase steel    microstructure    plastic deformation    step quenching    intercritical annealing    digital image correlation (DIC)
     出版日期: 2015-06-16
基金资助:*国家重点基础研究发展计划项目2012CB619600和国家自然科学基金项目51471107资助
引用本文:   
邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS. Acta Metall, 2015, 51(9): 1092-1100.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00083      或      http://www.ams.org.cn/CN/Y2015/V51/I9/1092
Fig.1  拉伸试样尺寸示意图
Fig.2  SQ和IA双相钢热处理工艺示意图
Fig.3  SQ和IA处理所得双相钢的OM像
Fig.4  IA和SQ样品的拉伸曲线
Sample σ 0.2 / MPa σ b / MPa h ? / MPa δ / %
IA 558 1006 6656 7.2
SQ 420 840 4046 10.8
Table1  2种材料的拉伸力学性能
Fig.5  SQ和IA样品的拉伸断口SEM像
Fig.6  SQ和IA样品的冲击断口SEM像
Fig.7  SQ样品目标区域变形前的SEM像及叠加SEM像的断后等效应变分布图
Fig.8  IA样品目标区域变形前SEM像及叠加SEM像的断后等效应变分布图
Fig.9  SQ和IA样品中等效应变分布频率统计图
Fig.10  SQ和IA样品断口附近的表面裂纹
[1] Rashid M. Annu Rev Mater Sci, 1981; 11(1): 245
[2] Ma M T,Wu B R. Dual Phase Steel-Physics & Mechanical Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1 (马鸣图,吴宝榕. 双相钢-物理和力学冶金. 第二版 , 北京: 冶金工业出版社, 2009: 1)
[3] Tian Z Q, Tang D, Jiang H T, Ma X L, Xu H X. Mater Mech Eng, 2009; 33(4): 1 (田志强, 唐 荻, 江海涛, 马小亮, 许洪汛. 机械工程材料, 2009; 33(4): 1)
[4] Gao L,Zhou Y M,Liu J L,Shen X D,Ren Z M. In: The Chinese Society for Metals ed., Proceeding 7th China Steel Conference, Beijing: Metallurgical Industry Press, 2009: 96 (高 丽,周月明,刘俊亮,沈小丹,任忠鸣. 见: 中国金属学会主编, 第七届中国钢铁年会论文集, 北京: 冶金工业出版社, 2009: 96)
[5] Tasan C, Hoefnagels J, Geers M. Scr Mater, 2010; 62: 835
[6] Byun T S, Kim I S. J Mater Sci, 1993; 28: 2923
[7] Gerbase J, Embury J D, Hobbs R M. In: Kot R A, Morris J W eds., Structure and Properties of Dual-Phase Steels, New York: TMS-AIME, 1979: 118
[8] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658
[9] Pierman A P, Bouaziz O, Pardoen T, Jacques P J, Brassart L. Acta Mater, 2014; 73: 298
[10] Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Mater Sci Eng, 2014; A604: 135
[11] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957
[12] Ahmad E, Manzoor T, Ziai M, Hussain N. J Mater Eng Perform, 2012; 21: 382
[13] Su Y, Gurland J. Mater Sci Eng, 1987; 95: 151
[14] Han Q, Kang Y, Hodgson P D, Stanford N. Scr Mater, 2013; 69: 13
[15] Kim N, Thomas G. Metall Trans, 1981; 12A: 483
[16] Xu Y Y, Deng J, Ge H Q, Shen Y. Mater Mech Eng, 2015; 39(6): 40 (许以阳, 邓 洁, 葛涵清, 沈 耀. 机械工程材料, 2015; 39(6): 40)
[17] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer-Verlag US, 2009: 119
[18] Pan B, Qian K, Xie H, Asundi A. Meas Sci Technol, 2009; 20(6): 1
[19] Kang J, Ososkov Y, Embury J D, Wilkinson D S. Scr Mater, 2007; 56: 999
[20] Kang J, Jain M, Wilkinson D S, Embury J D. J Strain Anal Eng Des, 2005; 40: 559
[21] Joo S H, Lee J K, Koo J M, Lee S, Suh D W, Kim H S. Scr Mater, 2013; 68: 245
[22] Heat Treatment Manual Editorial Committee in Heat Treatment Institute of Chinese Mechanical Engineering Society. Heat Treatment Manual (Vol.1). 3rd Ed., Beijing: China Machine Press, 2001: 131 (中国机械工程学会热处理专业学会《热处理手册》编委会.热处理手册(第一卷)工业基础. 第三版, 北京: 机械工业出版社, 2001: 131
[23] Bag A, Ray K K, Dwarakadasa E S. Metall Mater Trans, 1999; 30A: 1193
[24] Ghadbeigi H, Pinna C, Celotto S, Yates J. Mater Sci Eng, 2010; A527: 5026
[25] Shen H, Lei T, Liu J. Mater Sci Technol, 1986; 2(1): 28
[26] Woo W, Em V, Kim E Y, Han S, Han Y, Choi S H. Acta Mater, 2012; 60: 6972
[1] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[2] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[3] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[4] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[5] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[6] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[7] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[8] 陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
[9] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.
[10] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[11] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[12] 李晓雁. 纳米晶Al薄膜Bauschinger效应的分子动力学模拟*[J]. 金属学报, 2014, 50(2): 219-225.
[13] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
[14] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[15] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed