Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1481-1488    DOI: 10.11900/0412.1961.2015.00082
  本期目录 | 过刊浏览 |
650 MPa级V-N微合金化汽车大梁钢强化机制研究*
惠亚军1(),潘辉1,周娜2,李瑞恒2,李文远1,刘锟1
1 首钢技术研究院薄板研究所, 北京 100043
2 首钢股份公司迁安钢铁公司技术质量部, 迁安 064400
STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL
Yajun HUI1(),Hui PAN1,Na ZHOU2,Ruiheng LI2,Wenyuan LI1,Kun LIU1
1 Sheet Metal Research Institute, Shougang Research Institute of Technology, Beijing 100043
2 Technology and Quality Division, Qian'an Iron & Steel Company, Shougang Co., Ltd., Qian'an 064400
引用本文:

惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
Yajun HUI, Hui PAN, Na ZHOU, Ruiheng LI, Wenyuan LI, Kun LIU. STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL[J]. Acta Metall Sin, 2015, 51(12): 1481-1488.

全文: PDF(1372 KB)   HTML
摘要: 

采用OM, SEM和TEM对V微合金化钢与V-N微合金化钢的组织与析出相进行了分析, 研究了强化机制. 结果表明, V微合金化钢与V-N微合金化钢的显微组织主要为铁素体与少量珠光体的混合组织. 随着卷取温度的升高, V-N微合金化钢的强度呈现出先增加后下降的规律, 600 ℃时获得了最优的力学性能, 其屈服强度与抗拉强度分别达到了605与687 MPa, 延伸率为24.5%. 与V微合金化钢相比, V-N微合金化钢的铁素体晶粒更细小, 平均晶粒尺寸达到4.5 mm, 析出相更细小弥散, 尺寸在3~50 nm之间, 平均尺寸达到8.0 nm, 以及更高的位错密度. 晶粒细化、析出强化与位错强化是V-N微合金化钢具有高屈服强度的主要原因, 其中细晶强化是最主要的强化机制, 占总屈服强度的43.05%, 析出强化与位错强化对屈服强度的贡献高达34.44%.

关键词 V-N微合金化汽车大梁钢强化机制卷取温度    
Abstract

Automobile beam steel with high strength is the development trend of the automotive industry. With the development of heavy-duty vehicles, low cost automobile beam steel both with high strength and high toughness need to be developed. V-N microalloying method combined with thermal mechanical controlled process has a significant grain refinement function. Therefore, the relationship of different N content and technology should be studied in detail. In this work, the microstructure and precipitates of V and V-N microalloyed steel were investigated by using OM, SEM and TEM. And their strengthening mechanism was studied. The results show that both V microalloyed steel and V-N microalloyed steel mainly consist of ferrite and little pearlite. With the increasing of coiling temperature, the strength increased first and then decreased. The optimum mechanical properties were obtained when coiling at 600 ℃, the yield strength, tensile strength and elongation reached 605 MPa, 687 MPa and 24.5%, respectively. Compared with V microalloyed steel, the ferrite in V-N microalloyed steel present finer grain size which can be refined to about 4.5 mm. The precipitates were finer and more dispersed which distribute mainly between 3~50 nm and have the average size of 8.0 nm. And the dislocation density in V-N microalloyed steel is higher. Ferrite grain refinement strengthening, precipitation strengthening and dislocation strengthening make V-N microalloyed steel possess higher yield strength. Ferrite grain refinement strengthening is the predominant mechanism and contributes 43.05% to the yield strength. And the contribution of precipitation strengthening and dislocation strengthening to the yield strength is up to 34.44%.

Key wordsV-N microalloying    automobile beam steel    strengthening mechanism    coiling temperature
    
Steel C Si Mn P S Al N V Fe
V microalloyed steel V-N microalloyed steel 0.09 0.09 0.18 0.18 1.50 1.50 0.004 0.004 0.005 0.005 0.015 0.015 0.0055 0.0280 0.10 0.10 Bal. Bal.
表1  V微合金化钢与V-N微合金化钢的化学成分
图1  V微合金化钢与V-N微合金化钢在不同热轧工艺下的SEM像
Steel Tf / ℃ Tc / ℃ ss / MPa sb / MPa d / % Yield ratio
V microalloyed steel 870 600 475 546 33.5 0.87
V-N microalloyed steel 870 570 568 649 25.0 0.88
600 605 491 687 24.5 0.88
660 577 31.4 0.86
表2  V微合金化钢与V-N微合金化钢的力学性能
图2  V微合金化钢与V-N微合金化钢析出相分布的TEM像
图3  V微合金化钢与V-N微合金化钢的析出相的TEM像
图4  V-N微合金化钢晶内铁素体的OM与SEM像、析出物EDS与晶内铁素体形核示意图
Steel σ 0 / MPa Δ σ s / MPa Δ σ G / MPa Δ σ D i s / MPa Δ σ O r o w a n / MPa σ s / MPa
V microalloyed steel V-N microalloyed steel 54 54 74 82 188 260 98 141 102 153 458 604
表3  V微合金化钢与V-N微合金化钢的ss及其分量
[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[2] Yang D J, Fang Y, Du Q, Zhao Y T. Hot Working Technol, 2013; 42(2): 46
[2] (阳代军, 方 圆, 杜 倩, 赵运堂. 热加工工艺, 2013; 42(2): 46)
[3] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[6] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[7] Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
[8] Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
[9] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
[10] Honeycombe R W K, Medalist R F. Metall Trans, 1976; 7A: 915
[11] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[12] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[13] Balliger N K, Honeycombe R W K. Metall Trans, 1980; 11A: 421
[14] Naylor D J. Iron Making Steel Making, 1990; 17(1): 17
[15] Ishikawa F, Takahashi T. ISIJ Int, 1995; 20: 1128
[16] Yong Q L. The Second Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 175
[16] (雍岐龙.钢铁材料中的第二相.北京: 冶金工业出版社, 2006: 175)
[17] Zajac S, Hutchinson B, Lagneborge B. Scand J Metall, 2009; 48: 39
[18] Fang F, Yong Q L, Yang C F. Acta Metall Sin, 2005; 45: 625
[18] (方 芳, 雍岐龙, 杨才福. 金属学报, 2005; 45: 625)
[19] Medina S F, Gomez M, Rancel L. Scr Mater, 2008; 58: 1110
[20] Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
[21] De Aedo A J, Garela C I, Palmiere E J. ASM Handbook. Vol.4, Materials Park, OH: ASM International, 1990: 237
[22] Yong Q L. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 57
[22] (雍岐龙. 微合金钢—物理和力学冶金.北京: 机械工业出版社, 1989: 57)
[23] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
[24] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[25] Ashby M F. Strengthening Methods in Crystals. London: Applied Science Publishers Ltd., 1971: 137
[26] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[27] Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 惠亚军, 刘锟, 吴科敏, 李秋寒, 牛涛, 武巧玲. 卷取温度对500 MPa级热冲压桥壳用钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1605-1616.
[6] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[7] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[8] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[9] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[10] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[11] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[12] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[13] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[14] 王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .
[15] 姚向东;张静华;张志亚;李英敖;赵乃仁;管恒荣;胡壮麒. 合金元素对一种定向凝固钴基高温合金组织和性能的影响[J]. 金属学报, 1995, 31(7): 320-328.