Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 859-865    DOI: 10.11900/0412.1961.2015.00075
  本期目录 | 过刊浏览 | 高级检索 |
Si对高Nb-TiAl合金组织及室温拉伸性能的影响*
杨亮,高叔博,王艳丽,叶腾,宋霖,林均品()
EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY
Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
下载:  HTML  PDF(8226KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

研究硅化物(Nb5Si3相)析出对高Nb-TiAl合金组织及室温拉伸性能的影响. 实验结果表明, 硅化物脱溶析出温度在1000~1200 ℃之间, 析出物位于片层团晶界处、b(B2)相偏析处以及片层之间. 添加Si元素后, 合金室温拉伸性能有所增加. 因为Nb5Si3相的形成使得b(B2)相稳定元素Nb含量下降, 导致脆性相b(B2)相体积减少. 但是, 含Si高Nb-TiAl合金经过热处理后, 室温拉伸性能随热处理温度提高而逐步降低. 因为沿片层析出的硅化物会导致裂纹沿片层产生与增殖, 而且应力会导致硅化物进一步析出, 加速裂纹扩展. 而且, Si的加入会导致g相区扩大, 在1280~1300 ℃之间形成g单相区. 硅化物析出在片层边界处, 会导致块状g+b(B2)相组织, 脆化晶界; 而硅化物析出在片层内部会导致二次g板条形成, 割裂了初始片层组织.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  高Nb-TiAl合金  Si合金化  组织演变  室温拉伸性能    
Abstract: 

High Nb-TiAl alloys, which being regarded as a new generation TiAl alloy, had attracted more and more attention for their higher operating temperature and better oxidation resistance than conventional TiAl alloys. It was found that silicide particles in high Nb-TiAl alloys were Nb5Si3 rather than Ti5Si3 precipitated in TiAl alloys. In this work, the effect of Nb5Si3 phase on the microstructure and room-temperature tensile properties of high Nb-TiAl alloy was studied. The experimental results showed that the precipitation temperature of silicide was between 1000~1200 ℃. Precipitates located in the colony boundary, b(B2) segregation and between g/a2 lamella. The tensile properties of as-cast alloy with Si addition increased. Because the formation of Nb5Si3 precipitates resulted in the reduction of Nb content, which was one of b(B2) phase stable elements. Therefore, the volume fraction of b(B2) phase obviously decreased due to Si addition. However, after heat treatments, the tensile properties of Si containing high Nb-TiAl alloy gradually reduced with the increasing of heat treatment temperature. Silicide particles which precipitated along lamella leaded to generation and propagation of cracks. Moreover, silicide particles further precipitated due to tensile stress which increased the rate of crack propagation. Si addition leaded to g phase area expanded. g single-phase region formed between 1280~1300 ℃. Silicide precipitated in colony boundary resulted in bulk g+b(B2) phases, which weaken the grain boundaries. While silicide precipitated in lamella leaded to formation of secondary g lath which split the initial lamella microstructure.

Key words:  high Nb-TiAl alloy    Si alloyed    microstructure evolution    room temperature tensile properties
          接受日期:  2015-03-23           发布日期:  2015-04-15      期的出版日期:  2015-07-11
基金资助: *国家重点基础研究发展计划项目2011CB605500和国家自然科学基金项目51271016资助
引用本文:    
杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY. Acta Metall, 2015, 51(7): 859-865.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00075  或          http://www.ams.org.cn/CN/Y2015/V51/I7/859
Sample Temperature / ℃ Time / h Aging temperature / ℃ Time / h Cooling
HT1 1000 0.5 - - Air cooling
HT2 1200 0.5 - - Air cooling
HT3 1330 0.5 - - Air cooling
HT4 1330 0.5 900 24 Furnace cooling
表1  Ti-45Al-8Nb-2Mn-0.5Si (US)合金热处理工艺
图1  Ti-45Al-8Nb-2Mn (UM) 和US合金铸态组织的SEM-BSE像和EBSD像
Alloy g a2 b(B2) e
UM 94.6 0.827 4.54 -
US 97.7 0.026 0.56 1.665
表2  UM与US合金相组成
图2  US合金不同热处理后试样的SEM-BSE像
图3  HT3试样中析出相的TEM像、SAED谱及HRTEM像
图4  各试样的室温拉伸性能
图5  8Nb-TiAl基合金准相图[25]
图6  UM和US合金的DSC曲线
图7  HT2试样拉伸断口截面分析的二次电子像和EBSD像
图8  HT4试样的SEM-BSE像
图9  HT4试样中交叉片层的TEM像
[1] Kim Y W. Mater Sci Eng, 1995; A192-193: 519
[2] Loria E A. Intermetallics, 2000; 8: 1339
[3] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[4] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[5] Yoshihara M, Miura K. Intermetallics, 1995; 3: 357
[6] Liu Z C, Lin J P, Li S J, Chen G L. Intermetallics, 2002; 10: 653
[7] Zollinger J, Witusiewicz V, Drevermann A, Daloz D, Hecht U. Int J Cast Metal Res, 2009; 22: 339
[8] Jin Y G, Wang J N, Yang J, Wang Y. Scr Mater, 2004; 51: 113
[9] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[10] Beschliesser M, Chatterjee A, Lorich A, Knabl W, Kestler H, Dehm G, Clemens H. Mater Sci Eng, 2002; A329-331: 124
[11] Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, Chen G L. Intermetallics, 2007; 15: 668
[12] Huang Z W, Cong T. Intermetallics, 2010; 18: 161
[13] Wang J G, Nieh T G. Intermetallics, 2000; 8: 737
[14] Zhang W, Liu Y, Huang J S, Liu B, He Y H, Huang B Y. Rare Metal Mater Eng, 2009; 38: 1711
[15] Xu Z F, Xu X J, Lin J P, Zhang Y, Wang Y L, Lin Z, Chen G L. J Mater Eng, 2007; (9): 42 (许正芳, 徐向俊, 林均品, 张 勇, 王艳丽, 林 志, 陈国良. 材料工程, 2007; (9): 42)
[16] Hsu F Y, Wang G X, Klaar H J. Scr Metall Mater, 1995; 33: 597
[17] Gouma P I, Subramanian K, Kim Y W, Mills M J. Intermetallics, 1998; 6: 689
[18] Wunderlich W, Kremser T, Frommeyer G. Z Metallkd, 1990; 81: 802
[19] Wang G X, Dogan B, Hsu F Y, Klaar H J, Dahms M. Metall Mater Trans, 1995; 26A: 691
[20] Hornauer U, Richter E, Matz W, Reuther H, Mucklich A, Wieser E, Moller W, Schumacher G, Schutze M. Surf Coat Technol, 2000; 128-129: 418
[21] Dong L M, Cui Y Y, Yang R, Wang F H. Acta Metall Sin, 2004; 40: 383 (董利民, 崔玉友, 杨 锐, 王福会. 金属学报, 2004; 40: 383)
[22] Kim Y W, Kim S L. Intermetallics, 2014; 53: 92
[23] Karadge M, Kim Y W, Gouma P I. Metall Mater Trans, 2003; 34A: 2129
[24] Sun F S, Kim S E, Cao C X, Lee Y T, Yan M G. Scr Mater, 2001; 45: 383
[25] Chen G L, Zhang W J, Liu Z C, Li S J, Kim Y W. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 31
[26] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L. Mater Sci Eng, 2007; A471: 82
[27] Gouma P I, Karadge M. Mater Lett, 2003; 57: 3581
[1] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[2] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[3] 祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
[4] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[5] 马利平, 梁志强, 王西彬, 赵文祥, 焦黎, 刘志兵. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报, 2015, 51(3): 307-314.
[6] 周欢, 张铁邦, 吴泽恩, 胡锐, 寇宏超, 李金山. 间隙原子C作用下TiAl合金中析出相的形成及演变规律*[J]. 金属学报, 2014, 50(7): 832-838.
[7] 刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
[8] 田宇兴 李述军 郝玉琳 杨锐. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48(7): 837-844.
[9] 岳武,秦红波,周敏波,马骁,张新平. 结构变化对\Cu/Sn-58Bi/Cu微焊点电迁移行为和组织演变的影响[J]. 金属学报, 2012, 48(6): 678-686.
[10] 吴志强,唐正友,李华英,张海东. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48(5): 593-600.
[11] 程伟丽 阙仲萍 张金山 许春香 梁伟 YOU Bongsun. Zn含量对反挤压Mg-8Sn-Zn合金组织演变和力学性能的影响[J]. 金属学报, 2012, 48(3): 371-378.
[12] 曹永青 林鑫 汪志太 杨海欧 黄卫东. 激光快速熔凝Ni-Sn共晶合金的组织演变[J]. 金属学报, 2011, 47(5): 540-547.
[13] 姚志浩 董建新 张麦仓. GH738高温合金热变形过程显微组织控制与预测 I.组织演化模型的构建[J]. 金属学报, 2011, 47(12): 1581-1590.
[14] 唐正友 吴志强 昝娜 丁桦. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为[J]. 金属学报, 2011, 47(11): 1426-1433.
[15] 胡静 林栋樑 王 燕. EBSD技术分析大晶粒NiAl合金高温塑性变形 组织演变与CSL特征晶界分布[J]. 金属学报, 2009, 45(6): 652-656.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed