Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1077-1084    DOI: 10.11900/0412.1961.2015.00062
  本期目录 | 过刊浏览 |
超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究
朴楠1,2,陈吉1(),尹成江1,3,孙成4,张星航4,武占文5
2 清华大学核能与新能源技术研究院, 北京 100084
3 东北石油大学机械工程学院, 大庆 163318
4 Department of Mechanical Engineering, Texas A&M University, College station, TX 77843-3123, USA
5 中海油能源发展股份有限公司管道工程分公司, 天津 300452
INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION
Nan PIAO1,2,Ji CHEN1(),Chengjiang YIN1,3,Cheng SUN4,Xinghang ZHANG4,Zhanwen WU5
1 Center of Corrosion and Protection Technology in Petro-Chemical Industry, Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
3 Department of Mechanical Engineering, Northeast Petroleum University, Daqing 163318
4 Department of Mechanical Engineering, Texas A&M University, College station, TX 77843-3123, USA
5 CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452
引用本文:

朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
Nan PIAO, Ji CHEN, Chengjiang YIN, Cheng SUN, Xinghang ZHANG, Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. Acta Metall Sin, 2015, 51(9): 1077-1084.

全文: PDF(1656 KB)   HTML
摘要: 

采用动电位极化、循环极化、电化学阻抗谱、Mott-Schottky曲线结合表面形貌观察, 研究了利用等通道转角挤压方法制备的晶粒尺寸为(130±30) nm的超细晶304L不锈钢在含Cl-溶液(0.05 mol/L H2SO4 + 0.05 mol/L NaCl)中的点蚀行为. 研究表明, 超细晶材料比粗晶材料具有更高的腐蚀电流密度和钝化电流密度, 更低的腐蚀电位、破钝电位和保护电位, 且钝化区更窄. 严重塑性变形引起304L不锈钢材料晶粒显著细化, 一方面增加了表面钝化膜的施主密度和扩散系数, 降低了钝化膜的致密性, 使Cl-在材料表面的吸附能力增强; 另一方面增加了晶界含量, 使Cl-沿晶界向内扩散能力增强, 促进了点蚀形核和长大.

关键词 304L不锈钢等通道转角挤压超细晶钝化膜点蚀    
Abstract

The electrochemical behavior and pitting corrosion in a Cl- containing solution (0.05 mol/L H2SO4+0.05 mol/L NaCl) of the ultrafine-grained 304L stainless steel (304L SS) with average grain size of (130±30) nm prepared by equal channel angular pressing (ECAP) technique were examined using potentiodynamic polarization curves, cycle polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky (M-S) curve measurements together with SEM observation of surface morphology. As compared to the coarse-grained counterpart, the ultrafine-grained sample exhibited a higher corrosion current density icorr of 81.74 Acm2 and a lower corrosion potential Ecorr (vs SCE) of -466 mV, and having a higher passivation current density ip of 32.38 mAcm2 and a narrower passive region (-315~450 mV) together with a breakdown potential Eb decrease of 100 mV and a protection potential Ebp decrease of 190 mV. On one hand, the grain refinement induced by severe plastic deformation deteriorates the compactness of the passive films and is helpful for the Cl- absorption, resulting in a 1.6 times increase of the carrier density and one order of magnitude increase of the diffusion coefficient in the passive films. On the other hand, the significant increase of grain boundaries provides more possibility for Cl- diffusion along grain boundaries, and thus promotes the pitting nucleation and growth.

Key words304L stainless steel    equal channel angular pressing (ECAP)    ultrafine grain    passive film    pitting corrosion
    
基金资助:*辽宁省自然科学基金资助项目201202127
图1  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中的动电位极化曲线和循环极化曲线
Sample Ecorr / mV icorr / (mAcm-2) Ep / mV ip / (mAcm-2) Eb / mV Ebp / mV
UFG-304L -466 81.74 -315 32.38 552 198
CG-304L -401 19.45 -305 20.12 655 385
表 1  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中的动电位极化曲线和循环极化曲线的拟合结果
图2  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中循环极化后表面腐蚀形貌的SEM像
图3  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中不同Ef形成钝化膜的M-S曲线
图4  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中成膜30 min形成稳态钝化膜的Nd与Ef的关系
Sample 0.1 V 0.2 V 0.3 V 0.4 V
UFG-304L 7.52 6.04 5.32 4.55
CG-304L 6.57 5.26 4.59 4.11
表2  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 +0.05 mol/L NaCl溶液中不同Ef形成钝化膜的施主密度(Nd)
图5  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中成膜30 min形成的Lss与Ef的关系
图6  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中不同Ef下形成钝化膜的Nyquist曲线
图7  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 +0.05 mol/L NaCl溶液中点蚀示意图
Sample Ef / V Rs / (Ωcm-2) Qf/ (10-4 Fcm-2) n Rf / (104 Ωcm-2)
UFG-304L 0.1 9.58 1.96 0.80 2.19
0.2 8.56 2.06 0.82 2.99
0.3 7.54 2.31 0.86 3.49
0.4 10.78 1.99 0.90 4.03
CG-304L 0.1 11.35 1.05 0.87 3.88
0.2 10.34 1.26 0.87 4.06
0.3 9.86 1.57 0.90 4.52
0.4 10.84 1.70 0.92 5.03
表3  不同Ef下UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中形成表面钝化膜的Nyquist 曲线的拟合结果
图7  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4+0.05 mol/L NaCl溶液中点蚀示意图
[1] Valiev R Z, Islangaliev P K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2] Gleiter H. Acta Mater, 2000; 48: 1
[3] Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913
[4] Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99 (卢 柯, 周 飞. 金属学报, 1997; 33: 99)
[5] Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687
[6] Wang Y, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[7] Valiev R. Nat Mater, 2004; 3: 511
[8] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[9] Liu L, Li Y, Wang F H. J Mater Sci Technol, 2009; 54: 1339
[10] Kabi S, Raeissi K, Saatchi A. J Appl Electrochem, 2009; 39: 1279
[11] Yu B, Woo P, Erb U. Scr Mater, 2007; 56: 353
[12] Afshari V, Dehghanian C. Corros Sci, 2009; 51: 1844
[13] Li X L, Li Y, Wang F H. J Chin Soc Corros Prot, 2002; 22: 231 (李雪莉, 李 瑛, 王福会. 中国腐蚀与防护学报, 2002; 22: 321)
[14] Li N, Li Y, Wang S G, Wang F H. Electrochim Acta, 2006; 52: 760
[15] Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H. Acta Metall Sin, 2013; 49: 265 (韩 啸, 陈 吉, 孙 成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265)
[16] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[17] Kiyotaka N, Zenji H, Minoru N, Terence G L. Mater Sci Eng, 2000; A280: 82
[18] Ding J, Lin H C, Cao C N. Corros Sci, 2002; 14: 67
[19] Yang R C, Bi H J, Niu S R, Jin S T, Shen P. J Lanzhou Univ Technol, 2010; 36: 5 (杨瑞成, 毕海娟, 牛绍蕊, 靳塞特, 申 鹏. 兰州理工大学学报, 2010; 36: 5)
[20] Dewald J F. J Phys Chem Solids, 1960; 14: 155
[21] Buchler M, Schmuki P, Buhui H. Electrochim Acta, 1997; 43: 635
[22] Hakiki N E, Belo M D C. J Electrochem Soc, 1996; 143: 3088
[23] Gercasi C A, Folquer M E, Vallejo A E. Electrochim Acta, 2005; 50: 1113
[24] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[25] MacDonald D D, Urquidi-MacDonald M. J Electrochem Soc, 1990; 137: 2395
[26] Chao C Y, Lin L F, MacDonald D D. J Electrochem Soc, 1981;128: 1187
[27] Sikora E, Sikora J, MacDonald D D. Electrochim Acta, 1996; 41: 783
[28] Guo H X, Lu B T, Luo J L. Electrochim Acta, 2006; 52: 1118
[29] Glass G K, Hassanein A M, Buenfeld N R. Corrosion, 1998; 54: 887
[30] Hamadou L, Kadri A, Benbrahim N. Appl Surf Sci, 2005; 252: 1510
[31] Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Acta Chim Sin, 2008; 66: 1151 (李党国, 冯耀荣, 白真权, 朱杰武, 郑茂盛. 化学学报, 2008; 66: 1151)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[7] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[10] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[11] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[12] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[13] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[14] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[15] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.