Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1085-1091    DOI: 10.11900/0412.1961.2015.00044
  本期目录 | 过刊浏览 | 高级检索 |
固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响
陈雨来1,罗照银2,李静媛2()
2 北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL
Yulai CHEN1,Zhaoyin LUO2,Jingyuan LI2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  HTML  PDF(6431KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用OM, EPMA, SEM, EDS, TEM等研究了固溶温度对S32760双相不锈钢热轧板显微组织的影响及合金元素的分布特征, 并通过电化学工作站测定了材料的耐点蚀性能. 结果表明, S32760双相不锈钢在1080 ℃以上高温固溶过程中, N元素从g相扩散转移至d相中. 若固溶后缓慢冷却, 则N原子又重新迁移回g相中; 如果固溶后水冷, 则N原子来不及扩散, 于d相中原位弥散析出Cr2N颗粒. Cr2N颗粒的数量由淬火前的固溶温度决定, 温度越高数量越多. 当固溶温度从1100 ℃升至1300 ℃时, d相中N的固溶度快速上升, 其显微硬度由281 HV提高至345 HV; 而g相由于相比例降低也使得N的浓度间接上升, 显微硬度由290 HV升至314 HV. 同时, 由于实验钢中含有W, S32760双相不锈钢热轧板在1040 ℃以下热处理有s相析出, 因此其固溶水冷温度区间较窄, 最佳固溶温度为1060 ℃. 此温度保温60 min后水冷, 试样中无析出物, Brinell硬度为249 HBW, 点蚀电位为1068 mV, 维钝电流密度为1.48×10-4 A/cm2.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  双相不锈钢  固溶处理  析出  耐点蚀性能    
Abstract: 

In order to obtain the optimal corrosion resistance, the characteristics of microstructure and alloy elements distribution of S32760 duplex stainless steel were studied after solid solution treatment at various temperatures from 1000 ℃ to 1300 ℃ by means of OM, EPMA, SEM, EDS and TEM. In addition, the pitting corrosion resistance was measured by the electrochemical workstation. The results show that the N atoms diffused into d phase from g phase during solution treatment when the temperature was higher than 1080 ℃. N atoms migrated back into g phase when the subsequent cooling was slow enough. However, Cr2N phase in situ precipitated during quenching because there was not enough time for the N atoms to diffuse back into g phase. Cr2N particles increased with the solution temperature increasing. Furthermore, s phase precipitated when the tested sheet was heat treated at or below 1040 ℃ due to the high content of N. Thus it is obvious that the solution temperature range of the S32750 duplex stainless steel is quite narrow, which is between 1040 ℃ and 1080 ℃, and it is confirmed that the optimal temperature is 1060 ℃. After treated at 1060 ℃ for 60 min, the Brinell hardness of S32760 steel is 249 HBW, pitting potential is up to 1068 mV and the passive current density is as low as 1.48×10-4 A/cm2.

Key words:  duplex stainless steel    solution treatment    precipitation    corrosion resistance
                    发布日期:  2015-07-06      期的出版日期:  2015-09-16
基金资助: * 国家自然科学基金项目51174026和十二五国家科技支撑计划项目2012BAE04B02资助
引用本文:    
陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL. Acta Metall, 2015, 51(9): 1085-1091.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00044  或          http://www.ams.org.cn/CN/Y2015/V51/I9/1085
Steel C Cr Ni Mo N W Cu Mn Si S P Fe
ASTM A789 ≤0.030 24.0~26.0 6.0~8.0 3.0~4.0 0.20~0.30 0.50~1.00 0.50~1.00 ≤1.00 ≤1.00 ≤0.010 ≤0.030 Bal.
S32760 steel 0.014 25.11 6.93 3.51 0.253 0.69 0.69 0.77 0.52 0.001 0.028 Bal.
表1  实验用S32760双相不锈钢板及ASTM标准的化学成分
图1  S32760双相不锈钢不同温度固溶60 min后水冷的OM像
图2  S32760双相不锈钢1000 ℃保温60 min后的SEM像及EPMA面扫描结果
图3  经1000和1300 ℃热处理后试样内部析出物及其脱落后的SEM像
图4  S32760双相不锈钢1250 ℃固溶水冷后析出物的TEM像及析出物SAED谱
Point Mass fraction / % Phase
Cr Mo Ni
1 22.04 2.64 7.99 g
2 21.67 2.50 10.64 g
3 25.23 3.79 4.26 d
4 20.33 2.14 8.26 g
5 19.76 2.17 7.69 g
6 19.68 2.30 7.68 g
表2  图3a中典型相化学成分的EDS分析
图5  S32760双相不锈钢不同温度固溶处理后的OM像
图6  S32760双相不锈钢经不同温度固溶处理后的极化曲线
图7  S32760双相不锈钢经不同温度固溶处理后的点蚀电位及维钝电流密度
[1] Gurrappa I, Krishna Reddy C V. J Mater Process Technol, 2007; 182: 195
[2] Huang C S, Shih C C. Mater Sci Eng, 2005; A402: 66
[3] Migiakis K, Daniolos N, Papadimitriou G D. Mater Manuf Processes, 2010; 25: 598
[4] Sun X G. Shanxi Metall, 2013; (3): 6 (孙晓刚. 山西冶金, 2013; (3): 6)
[5] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 8 (吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 8)
[6] Yang S M, Chen Y C, Chen C H, Huang W P, Lin D Y. J Alloys Compd, 2015; 633: 48
[7] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770
[8] Bettini E, Kivis?kk U, Leygraf C, Pan J. Electrochim Acta, 2013; 113: 280
[9] Du J, Wang C, Wang K, Chen K. Intermetallics, 2014; 45: 80
[10] Chen X H, Ren X P, Xu H, Tong J G, Zhang H Y. Int J Min Met Mater, 2012; 19: 518
[11] Zanotto F, Grassi V, Merlin M, Balbo A, Zucchi F. Corros Sci, 2015; 94: 38
[12] Lacerda J C, Candido L C, Godefroid L B. Int J Fatigue, 2015; 74: 81
[13] Migiakis K, Papadimitriou G D. J Mater Sci, 2009; 44: 6372
[14] Elsabbagh F M, Hamouda R M, Taha M A. J Mater Eng Perform, 2014; 23: 275
[15] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456 (向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[16] Udayakumar T, Raja K, Afsal Husain T M, Sathiya P. Mater Des, 2014; 53: 226
[17] de Messano L V R, Sathler L, Reznik L Y, Coutinho R. Int Biodeter Biodegr, 2009; 63: 607
[18] Chen W, Wang X Y, Wang D Y, Zhang H G. Heat Treat, 2013; (3): 45 (陈 炜, 王晓燕, 王冬颖, 张会国. 热处理, 2013; (3): 45)
[19] Yan K R. Metall Collections, 1994; (1): 28 (颜宽然. 冶金丛刊, 1994; (1): 28)
[20] Li R S, Wang Z Y. Acta Metall Sin, 1994; 30: 477 (李仁顺, 王佐义. 金属学报, 1994; 30: 477)
[21] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304 (向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[22] Garfias-Mesias L F, Sykes J M, Tuck C D S. Corros Sci, 1996; 38: 1319
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 7 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 7)
[24] Zhao J L, Xiao X S, Xu M H, Fang J X, Li J, Li M. Shanghai Steel Iron Res, 2006; (3): 33 (赵钧良, 肖学山, 徐明华, 方静贤, 李 钧, 李 明. 上海钢研, 2006; (3): 33)
[25] Comer A, Looney L. Int J Fatigue, 2006; 28: 826
[1] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[2] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[3] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[4] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[5] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[6] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[7] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[8] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[9] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[10] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[11] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[12] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
[13] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[14] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[15] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed