Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1085-1091    DOI: 10.11900/0412.1961.2015.00044
  本期目录 | 过刊浏览 | 高级检索 |
固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响
陈雨来1,罗照银2,李静媛2()
2 北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL
Yulai CHEN1,Zhaoyin LUO2,Jingyuan LI2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(6431 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

利用OM, EPMA, SEM, EDS, TEM等研究了固溶温度对S32760双相不锈钢热轧板显微组织的影响及合金元素的分布特征, 并通过电化学工作站测定了材料的耐点蚀性能. 结果表明, S32760双相不锈钢在1080 ℃以上高温固溶过程中, N元素从g相扩散转移至d相中. 若固溶后缓慢冷却, 则N原子又重新迁移回g相中; 如果固溶后水冷, 则N原子来不及扩散, 于d相中原位弥散析出Cr2N颗粒. Cr2N颗粒的数量由淬火前的固溶温度决定, 温度越高数量越多. 当固溶温度从1100 ℃升至1300 ℃时, d相中N的固溶度快速上升, 其显微硬度由281 HV提高至345 HV; 而g相由于相比例降低也使得N的浓度间接上升, 显微硬度由290 HV升至314 HV. 同时, 由于实验钢中含有W, S32760双相不锈钢热轧板在1040 ℃以下热处理有s相析出, 因此其固溶水冷温度区间较窄, 最佳固溶温度为1060 ℃. 此温度保温60 min后水冷, 试样中无析出物, Brinell硬度为249 HBW, 点蚀电位为1068 mV, 维钝电流密度为1.48×10-4 A/cm2.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 双相不锈钢固溶处理析出耐点蚀性能    
Abstract

In order to obtain the optimal corrosion resistance, the characteristics of microstructure and alloy elements distribution of S32760 duplex stainless steel were studied after solid solution treatment at various temperatures from 1000 ℃ to 1300 ℃ by means of OM, EPMA, SEM, EDS and TEM. In addition, the pitting corrosion resistance was measured by the electrochemical workstation. The results show that the N atoms diffused into d phase from g phase during solution treatment when the temperature was higher than 1080 ℃. N atoms migrated back into g phase when the subsequent cooling was slow enough. However, Cr2N phase in situ precipitated during quenching because there was not enough time for the N atoms to diffuse back into g phase. Cr2N particles increased with the solution temperature increasing. Furthermore, s phase precipitated when the tested sheet was heat treated at or below 1040 ℃ due to the high content of N. Thus it is obvious that the solution temperature range of the S32750 duplex stainless steel is quite narrow, which is between 1040 ℃ and 1080 ℃, and it is confirmed that the optimal temperature is 1060 ℃. After treated at 1060 ℃ for 60 min, the Brinell hardness of S32760 steel is 249 HBW, pitting potential is up to 1068 mV and the passive current density is as low as 1.48×10-4 A/cm2.

Key wordsduplex stainless steel    solution treatment    precipitation    corrosion resistance
     出版日期: 2015-07-06
基金资助:* 国家自然科学基金项目51174026和十二五国家科技支撑计划项目2012BAE04B02资助
引用本文:   
陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL. Acta Metall, 2015, 51(9): 1085-1091.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00044      或      http://www.ams.org.cn/CN/Y2015/V51/I9/1085
Steel C Cr Ni Mo N W Cu Mn Si S P Fe
ASTM A789 ≤0.030 24.0~26.0 6.0~8.0 3.0~4.0 0.20~0.30 0.50~1.00 0.50~1.00 ≤1.00 ≤1.00 ≤0.010 ≤0.030 Bal.
S32760 steel 0.014 25.11 6.93 3.51 0.253 0.69 0.69 0.77 0.52 0.001 0.028 Bal.
Table 1  实验用S32760双相不锈钢板及ASTM标准的化学成分
Fig.1  S32760双相不锈钢不同温度固溶60 min后水冷的OM像
Fig.2  S32760双相不锈钢1000 ℃保温60 min后的SEM像及EPMA面扫描结果
Fig.3  经1000和1300 ℃热处理后试样内部析出物及其脱落后的SEM像
Fig.4  S32760双相不锈钢1250 ℃固溶水冷后析出物的TEM像及析出物SAED谱
Point Mass fraction / % Phase
Cr Mo Ni
1 22.04 2.64 7.99 g
2 21.67 2.50 10.64 g
3 25.23 3.79 4.26 d
4 20.33 2.14 8.26 g
5 19.76 2.17 7.69 g
6 19.68 2.30 7.68 g
  图3a中典型相化学成分的EDS分析
Fig.5  S32760双相不锈钢不同温度固溶处理后的OM像
Fig.6  S32760双相不锈钢经不同温度固溶处理后的极化曲线
Fig.7  S32760双相不锈钢经不同温度固溶处理后的点蚀电位及维钝电流密度
[1] Gurrappa I, Krishna Reddy C V. J Mater Process Technol, 2007; 182: 195
[2] Huang C S, Shih C C. Mater Sci Eng, 2005; A402: 66
[3] Migiakis K, Daniolos N, Papadimitriou G D. Mater Manuf Processes, 2010; 25: 598
[4] Sun X G. Shanxi Metall, 2013; (3): 6 (孙晓刚. 山西冶金, 2013; (3): 6)
[5] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 8 (吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 8)
[6] Yang S M, Chen Y C, Chen C H, Huang W P, Lin D Y. J Alloys Compd, 2015; 633: 48
[7] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770
[8] Bettini E, Kivis?kk U, Leygraf C, Pan J. Electrochim Acta, 2013; 113: 280
[9] Du J, Wang C, Wang K, Chen K. Intermetallics, 2014; 45: 80
[10] Chen X H, Ren X P, Xu H, Tong J G, Zhang H Y. Int J Min Met Mater, 2012; 19: 518
[11] Zanotto F, Grassi V, Merlin M, Balbo A, Zucchi F. Corros Sci, 2015; 94: 38
[12] Lacerda J C, Candido L C, Godefroid L B. Int J Fatigue, 2015; 74: 81
[13] Migiakis K, Papadimitriou G D. J Mater Sci, 2009; 44: 6372
[14] Elsabbagh F M, Hamouda R M, Taha M A. J Mater Eng Perform, 2014; 23: 275
[15] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456 (向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[16] Udayakumar T, Raja K, Afsal Husain T M, Sathiya P. Mater Des, 2014; 53: 226
[17] de Messano L V R, Sathler L, Reznik L Y, Coutinho R. Int Biodeter Biodegr, 2009; 63: 607
[18] Chen W, Wang X Y, Wang D Y, Zhang H G. Heat Treat, 2013; (3): 45 (陈 炜, 王晓燕, 王冬颖, 张会国. 热处理, 2013; (3): 45)
[19] Yan K R. Metall Collections, 1994; (1): 28 (颜宽然. 冶金丛刊, 1994; (1): 28)
[20] Li R S, Wang Z Y. Acta Metall Sin, 1994; 30: 477 (李仁顺, 王佐义. 金属学报, 1994; 30: 477)
[21] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304 (向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[22] Garfias-Mesias L F, Sykes J M, Tuck C D S. Corros Sci, 1996; 38: 1319
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 7 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 7)
[24] Zhao J L, Xiao X S, Xu M H, Fang J X, Li J, Li M. Shanghai Steel Iron Res, 2006; (3): 33 (赵钧良, 肖学山, 徐明华, 方静贤, 李 钧, 李 明. 上海钢研, 2006; (3): 33)
[25] Comer A, Looney L. Int J Fatigue, 2006; 28: 826
[1] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[2] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[3] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[4] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[5] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[6] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[7] 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51(4): 417-424.
[8] 张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋. 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究[J]. 金属学报, 2015, 51(3): 315-324.
[9] 顾媛,陈江华,刘春辉,朱东晖,刘力梅,陶冠辉. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响*[J]. 金属学报, 2015, 51(11): 1400-1406.
[10] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[11] 戴付志, 张文征. 双相不锈钢中沉淀相平衡形貌及界面结构的原子尺度计算[J]. 金属学报, 2014, 50(9): 1123-1127.
[12] 杨富强, 宋仁伯, 孙挺, 张磊峰, 赵超, 廖宝鑫. Fe-Mn-Al轻质高强钢组织和力学性能研究*[J]. 金属学报, 2014, 50(8): 897-904.
[13] 陈雨来, 张泰然, 王一德, 李静媛. O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响*[J]. 金属学报, 2014, 50(8): 905-912.
[14] 张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*[J]. 金属学报, 2014, 50(8): 913-920.
[15] 苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed