Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 920-924    DOI: 10.11900/0412.1961.2015.00028
  本期目录 | 过刊浏览 |
超超临界锅炉用HR3C钢的σ 相析出行为研究*
王慧,程从前,赵杰(),杨鸷
STUDY ON σ PHASE PRECIPITATION OF HR3C STEEL USED IN ULTRA-SUPERCRITICAL BOILER
Hui WANG,Congqian CHENG,Jie ZHAO(),Zhi YANG
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023
引用本文:

王慧,程从前,赵杰,杨鸷. 超超临界锅炉用HR3C钢的σ 相析出行为研究*[J]. 金属学报, 2015, 51(8): 920-924.
Hui WANG, Congqian CHENG, Jie ZHAO, Zhi YANG. STUDY ON σ PHASE PRECIPITATION OF HR3C STEEL USED IN ULTRA-SUPERCRITICAL BOILER[J]. Acta Metall Sin, 2015, 51(8): 920-924.

全文: PDF(2667 KB)   HTML
摘要: 

利用OM, SEM和TEM研究了一种超超临界用HR3C钢 在700和750 ℃长期时效至2000 h过程中s相的析出行为, 借助相计算方法探究了影响s相析出的因素. 结果表明, HR3C钢在700和750 ℃时效1000 h就有不规则块状第二相在晶界析出, 且随时效时间延长而增多和粗化; EDS分析表明该相主要含Fe和Cr, 结合SAED的分析结果最终确定其为s-FeCr金属间化合物; 通过相计算方法对初始态HR3C钢进行分析认为, 显微组织或相结构等差异可能是影响后续s相析出行为的原因.

关键词 HR3C钢时效s相计算方法显微组织    
Abstract

HR3C steel is a new type of austenitic heat-resistant steel which has been widely used for super-heater and re-heater tubes in the ultra-supercritical (USC) boiler. The mechanical properties of HR3C steel were dependent on the stability of the microstructure, particularly the large amount of precipitates formed during service. The precipitation of s phase in HR3C steel during long-term aging for 2000 h at temperature of 700 and 750 ℃ was investigated by OM, SEM and TEM. The phase calculation method was applied to understand the factors influencing the precipitation. After 1000 h of the aging duration, irregular mass second phase was found to precipitate at the grain boundary, followed by the subsequent increasing and coarsening with time. The constituent elements of the phases were determined as Fe and Cr through SEM equipped with EDS. Further SAED analysis results led to the confirmation that these phases were basically s-FeCr compound. Combined with the prediction made through New PHACOMP method, the microstructure or phase structure in initial state may affect the subsequent precipitation behavior.

Key wordsHR3C steel    aging    s phase    phase computation    microstructure
    
基金资助:* 国家自然科学基金项目51171037和51134013资助
图1  HR3C钢不同热处理状态微观组织OM像
图2  750 ℃时效2000 h后HR3C钢的SEM像及EDS分析
图3  750 ℃时效2000 h 后HR3C钢晶界大尺寸析出相的TEM像和SAED谱及EDS分析
图4  初始态HR3C钢的SEM像及EDS分析
[1] Yang F,Zhang Y L,Ren Y N,Li W M. New Heat-Resistant Steels Welding. Beijing: China Electric Power Press, 2006: 143 (杨 富,章应霖,任永宁,李为民. 新型耐热钢焊接. 北京: 中国电力出版社, 2006: 143)
[2] Zhou R C, Fan C X. Electric Power, 2005; 38(8): 41 (周荣灿, 范长信. 中国电力, 2005; 38(8): 41)
[3] Tang L P. Appl Energy Technol, 2007; (10): 20 (唐利萍. 应用能源技术, 2007; (10): 20)
[4] Shirzadi A, Jackson S. Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials. Cambridge: Woodhead Publishing , 2014: 105
[5] Sawaragi Y, Teranishi H, Makiura H, Miura M, Kubota M. Sumitomo Met, 1985; 37(2): 166
[6] Bai X, Pan J, Chen G, Liu J, Wang J, Zhang T, Tang W. Mater Sci Technol-Lond, 2014; 30(2): 205
[7] Wang B, Liu Z D, Cheng S C, Liu C M, Wang J Z. J Iron Steel Res Int, 2014; 21: 765
[8] Sandstrm R, Farooq M, Zurek J. Mater Res Innov, 2013; 17: 355
[9] Igarashi M. In: Yagi K, Merkling G, Kern T U, Irie H, Warlimont W eds., Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies. Vol.2, Berlin: Springer-Verlag, 2004: 292
[10] Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2: 199
[11] Yin Z, Cai H, Liu H G. Proc Chin Soc Electrical Eng, 2011; 31(29): 103 (殷 尊, 蔡 辉, 刘鸿国. 中国电机工程学报, 2011; 31(29) : 103 )
[12] Fang Y Y, Zhao J, Li X N. Acta Metall Sin, 2010; 46: 844 (方园园, 赵 杰, 李晓娜. 金属学报, 2010; 46: 844)
[13] Hu P, Wang Z W, Li Z G. Guangdong Electric Power, 2010; 23(5) : 16 (胡 平, 王志武, 李正刚. 广东电力, 2010; 23(5): 16)
[14] Sourmail T, Bhadeshia H K D H. Mater Sci Technol, 2005; 36: 23
[15] Sahlaoui H, Sidhom H. Metall Mater Trans, 2013; 44: 3077
[16] Talbot A M, Furman D E. Trans ASM, 1953; 45: 429
[17] Zhang J S, Cui H, Hu Z Q. Mater Sci Eng, 1993; 11(3): 1 (张济山, 崔 华, 胡壮麒. 材料科学与工程, 1993; 11(3): 1)
[18] Guo J T. Physics, 1982; 11: 661 (郭建亭. 物理, 1982; 11: 661)
[19] Liu Y, Deng B, Chen J S, Zhong Z Y. J Mater Eng, 1997; 7: 23 (刘 瑛, 邓 波, 陈金生, 仲增墉. 材料工程, 1997; 7: 23)
[20] Fang Y Y. Master Thesis, Dalian University of Technology, 2010 (方园园. 大连理工大学硕士学位论文, 2010)
[21] Masuyama F. ISIJ Int, 2001; 41: 612
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[6] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[9] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[13] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[14] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[15] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.