Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 925-934    DOI: 10.11900/0412.1961.2014.00719
  本期目录 | 过刊浏览 |
回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响*
蒋中华,王培(),李殿中,李依依
EFFECTS OF TEMPERING TEMPERATURE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GRANULAR BAINITE IN 2.25Cr-1Mo-0.25V STEEL
Zhonghua JIANG,Pei WANG(),Dianzhong LI,Yiyi LI
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

蒋中华,王培,李殿中,李依依. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响*[J]. 金属学报, 2015, 51(8): 925-934.
Zhonghua JIANG, Pei WANG, Dianzhong LI, Yiyi LI. EFFECTS OF TEMPERING TEMPERATURE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GRANULAR BAINITE IN 2.25Cr-1Mo-0.25V STEEL[J]. Acta Metall Sin, 2015, 51(8): 925-934.

全文: PDF(11117 KB)   HTML
摘要: 

利用纳米压痕仪, OM, SEM, TEM, XRD, EPMA等设备研究了加氢反应器用2.25Cr-1Mo-0.25V钢正火态粒状贝氏体组织及力学性能随回火温度的变化. 结果表明, 2.25Cr-1Mo-0.25V钢正火后得到由贝氏体铁素体、马氏体和残余奥氏体岛(M-A岛)组成的粒状贝氏体组织. 纳米压痕测量结果表明, 由于M-A岛中富集C, 其硬度显著高于贝氏体铁素体. 在回火过程中, M-A岛分解和贝氏体铁素体软化的综合作用导致了2.25Cr-1Mo-0.25V钢在-18 ℃的冲击功随着回火温度的升高先增加后减少. 除了铁素体基体回复再结晶软化效应外, 粒状贝氏体组织中硬相M-A岛回火转变程度以及析出碳化物形貌、尺寸和分布是影响2.25Cr-1Mo-0.25V钢冲击韧性的关键因素.

关键词 2.25Cr-1Mo-0.25V钢粒状贝氏体冲击韧性马氏体-奥氏体岛    
Abstract

2.25Cr-1Mo-0.25V steel is the most popular material used for pressure-vessel applied at elevated-temperature in hydrogen environment. For higher process efficiencies in future coal-conversion plants, chemical processing plants, and petrochemical-refining plants, much thicker cross-section component are necessary for constructing much larger pressure-vessel for these plants. Because of the thick cross-section, the cooling rate in the central region of the component is insufficient to obtain low bainite during quenching treatment, and a large amount of granular bainite appears in the central region. Previous studies have shown that good impact toughness can be achieved by appropriate tempering for 2.25Cr-1Mo-0.25V steel with low bainite microstructure. However, the impact toughness of 2.25Cr-1Mo-0.25V steel with granular bainite after tempering always cannot satisfy the demanding requirement due to the unclear understanding of the evolution of microstructure and mechanical properties during tempering. In this work, the influence of tempering on the microstructure and mechanical properties of 2.25Cr-1Mo-0.25V steel with granular bainite microstructure was investigated by OM, XRD, SEM, TEM and EPMA. The results show that the normalized 2.25Cr-1Mo-0.25V steel with granular bainite microstructure is composed of bainite ferrite and island of martensite and austenite (M-A island). Nanoindentation test indicates that M-A island is much harder than that of metrix bainite ferrite, because of the high concentration of carbon in M-A islands. The synergistic effect of the decomposition of M-A islands and softening of bainite ferrite determined that Charpy absorbed energy at -18 ℃ increases first and then decreases with the increasement of tempering temperature. The degree of decomposition of M-A islands and the morphology, size and distribution of carbides in granular bainite, coupled with the softening effect of bainite ferrite recrystallization are the key factors determining low-temperature impact toughness of 2.25Cr-1Mo-0.25V steel.

Key words2.25Cr-1Mo-0.25V steel    granular bainite    impact toughness    M-A island
    
Material C Cr Mo V Ni Mn Si P S Fe
Standard ≤0.17 2.0~2.5 0.9~1.1 0.25~0.35 ≤0.25 0.3~0.6 ≤0.10 ≤0.015 ≤0.010 Bal.
Experimental 0.14 2.46 1.00 0.28 0.15 0.59 0.05 0.006 0.002 Bal.
表1  标准及实验用2.25Cr-1Mo-0.25V钢的化学成分
图1  2.25Cr-1Mo-0.25V钢正火后显微组织的OM和SEM像
图2  粒状贝氏体中贝氏体铁素体和M-A岛纳米压痕载荷-位移曲线
图3  粒状贝氏体组织中C元素分布
图4  M-A岛中的马氏体的TEM像
图5  回火温度对2.25Cr-1Mo-0.25V钢力学性能的影响
图6  回火温度对2.25Cr-1Mo-0.25V钢冲击韧性的影响
图7  2.25Cr-1Mo-0.25V钢经正火和不同温度回火后显微组织的SEM像
图8  2.25Cr-1Mo-0.25V钢回火组织TEM像及碳化物的SAED花样
图9  不同温度回火后2.25Cr-1Mo-0.25V钢在-18 ℃低温冲击断口形貌
图10  不同温度回火后2.25Cr-1Mo-0.25V钢在-18 ℃低温冲击断口侧剖面CLSM像
[1] Bhadeshia H K D H. Bainite in Steels. 2nd Ed., London: The Institute of Materials, 2001: 323
[2] Klueh R L, Swindeman R W. Metall Trans, 1986; 17A: 1027
[3] Tao P, Zhang C, Yang Z G. Acta Metall Sin, 2009; 45: 51 (陶 鹏, 张 弛, 杨志刚. 金属学报, 2009; 45: 51)
[4] Guo J. Master Thesis, Yanshan University, Qinhuangdao, 2004 (郭 建. 燕山大学硕士学位论文, 秦皇岛, 2004)
[5] Li Z J, Xiao N M, Li D Z, Zhang J Y, Luo Y J, Zhang R X. Acta Metall Sin, 2014; 50: 777 (李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. 金属学报, 2014; 50: 777)
[6] Gojic M, Kosec L, Matkovic P. J Mater Sci, 1988; 33: 395
[7] Yu J, Mcmahon C J. Metal Trans, 1980; 11A: 277
[8] Qu Y B, Huang X Q, Cao B, Cai Z P, Pan J L. Chin J Mech Eng, 2011; 47(14): 44 (屈岳波, 黄欣泉, 曹 彬, 蔡志鹏, 潘际銮. 机械工程学报, 2011; 47(14): 44)
[9] Klueh R L, Nasreldin A M. Metall Trans, 1987; 18A: 1279
[10] Luo Y, Peng J M, Wang H B, Wu X C. Mater Sci Eng, 2010; A527: 3433
[11] Zhang Y T, Song G B, Zhang H Q, Li J F. 139th Annual Meeting & Exhibition—Supplemental Proceedings, Vol.3, Seattle, USA, 2010 (CD-ROM)
[12] Kovacs B V. AFS Trans, 1994; 102: 417
[13] Lambert A, Drillet J, Gourgues A F, Sturel T, Pineau A.?Sci Technol Weld Join, 2000; 5: 168
[14] Fang H S, Bai B Z, Zheng X H, Zheng Y K, Chen X Y, Zhao R F. Acta Metall Sin, 1986; 22: 238 (方鸿生, 白秉哲, 郑秀华, 郑燕康, 陈秀云, 赵如发. 金属学报, 1986; 22: 238)
[15] Sun S W, Mao J F, Lei T Q, He L L. Acta Metall Sin, 2000; 36: 1009 (孙树文, 茅建富, 雷廷全, 贺连龙. 金属学报, 2000; 36: 1009)
[16] Sun S W, Lei T Q, Tang Z X, Chen J L, You G, Wang X. Iron Steel, 1997; 32(12): 41 (孙树文, 雷廷全, 唐之秀, 陈家伦, 犹 公, 王 欣. 钢铁, 1997; 32(12): 41)
[17] Lei T C, Sun J, Tang C H, Lei M. Mater Sci Technol, 1990; 6(2): 124
[18] Irani J J, May M J, Elliott D. ASTM STP 407, Philadelphia: ASTM,1968: 168
[19] Tezuka H,Sakurai T. Int J Pressure Vessel Pipe, 2005; 82: 165
[20] Guan K, Xu X, Xu H, Wang Z. Nucl Eng Des, 2005; 235: 2485
[21] Briant C L. Mater Sci Technol, 1989; 5: 138
[22] Michaud P, Delagnes D, Lamesle P, Mathon M H. Acta Mater, 2007; 25: 4877
[23] Yang H, Kim S. Mater Sci Eng, 2001; A319: 316
[24] Lan L Y, Qiu C L, Zhao D W, Gao X H, Du L X. Mater Sci Eng, 2011; A529: 192
[25] Chen J H, Kikuta Y, Araki T, Yoneda M, Matsuda Y. Acta Metall, 1984; 32: 1779
[26] Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563
[27] Hu G L, Liu Z T, Wang P, Hwa W J, Kang M K. Mater Sci Eng, 1991; A141: 221
[28] Chen J D, Mo W L, Wang P, Lu S P. Acta Metall Sin, 2012; 48: 1186 (陈俊丹, 莫文林, 王 培, 陆善平. 金属学报, 2012; 48: 1186)
[29] Gao G H, Zhang H, Bai B Z. Acta Metall Sin, 2011; 47: 513 (高古辉, 张 寒, 白秉哲. 金属学报, 2011; 47: 513)
[1] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[2] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[3] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[4] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[5] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[6] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[7] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[8] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[9] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[10] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[11] 李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. G18CrMo2-6钢回火组织及冲击韧性研究*[J]. 金属学报, 2014, 50(7): 777-786.
[12] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
[13] 温涛, 胡小锋 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
[14] 李冬杰, 陆善平, 李殿中, 李依依. 高氮钢焊缝的组织和冲击性能研究[J]. 金属学报, 2013, 49(2): 129-136.
[15] 杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.