Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 777-783    DOI: 10.11900/0412.1961.2014.00678
  本期目录 | 过刊浏览 |
超细晶粒钢中晶粒尺寸对塑性的影响模型*
刘觐1,朱国辉1,2()
2 安徽工业大学冶金工程学院, 马鞍山243000
MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS
Jin LIU1,Guohui ZHU1,2()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243000
引用本文:

刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
Jin LIU, Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. Acta Metall Sin, 2015, 51(7): 777-783.

全文: PDF(1113 KB)   HTML
摘要: 

以作者前期提出的位错塞积模型为基础, 结合断裂强度与晶粒尺寸的关系, 建立了晶粒细化导致超细晶粒钢总伸长率降低的临界晶粒尺寸的计算模型. 以晶粒尺寸从10 mm减小到0.2 mm为例, 计算结果表明, 钢的总塑性伸长率随着晶粒尺寸的减小首先呈现增加的趋势, 但是当晶粒尺寸减小到大约2.5 mm后, 随着晶粒尺寸的减小, 钢的总伸长率不仅不再增加, 反而出现了显著的降低, 这一结果较好地吻合了近期超细晶粒材料研究的实验现象. 本工作的研究说明, 导致超细晶粒钢伸长率降低的主要机制在于当晶粒细化到一定程度后, 晶界对位错源开动的阻力增大, 由此导致的可动位错数目显著降低使得应变量显著减少.

关键词 塑性超细晶粒晶粒尺寸位错塞积位错源    
Abstract

Based on our earlier preliminary work, a model was developed for prediction of the critical grain size where the plasticity would be decreased as the grain refined. In the model the effect of grain size on the fracture strength was combined. The prediction of the model exhibited that in the range of grain size of 10 mm to 0.2 mm as an example, the total elongation of the steels would be firstly increased. But when the grain size was refined to 2.5 mm and below, the total elongation of the steels was not increased but decreased sharply, which was good agreement with the experimental results published recently. Present work illustrated that the dominant mechanism of the elongation decreased in the ultra-fine grain size materials is due to increase in resistance force of grain boundaries on the dislocation sources resulting in the difficulty of activation of dislocation movements. Its expression would be the decrease of the plastic strain in macro-level.

Key wordsplasticity    ultrafine grain size    grain size    dislocation pile-up    dislocation source
    
基金资助:*国家自然科学基金项目51071026和教育部留学回国人员科研启动基金项目资助
图1  多晶体材料的断裂强度 σf 随晶粒尺寸d的变化
图2  单个晶粒中的位错塞积示意图
图3  相应断裂强度下单个晶粒的位移量 Df0 随d的变化曲线
图4  晶界阻碍Frank-Read源(FR源)增殖产生位错的示意图
图5  外加应力分别为616 MPa, 1946 MPa和相应的断裂 强度时, 多晶体中FR源的可开动几率Ff随d的变化关系曲线
图6  钢的总塑性伸长率ef随d的变化关系曲线
图7  超细晶粒钢的均匀伸长率eu或总伸长率ef随d的变化关系的实验数据[5,6,9,37~42]
[1] Kim Y M, Kim S K, Lim Y J, Kim N J. ISIJ Int, 2002; 42: 1571
[2] Zhao M C, Shan Y Y, Xiao F R, Yang K, Li Y H. Mater Lett, 2002; 57: 141
[3] Okatsu M, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 8
[4] Ishikawa N, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 15
[5] Park K T, KimY S, Lee J G, Shin D H. Mater Sci Eng, 2000; A293: 165
[6] Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[7] Kumar B R, Sharma S, Kashyap B P, Prabhu N. Mater Des, 2015; 68: 63
[8] Song R, Ponge D, Raabe D. Scr Mater, 2005; 52: 1075
[9] Lee T, Koyama M, Tsuzaki K, Lee Y H, Lee C S. Mater Lett, 2012; 75: 169
[10] Lee T, Park C H, Lee D, Lee C S. Mater Sci Eng, 2011; A528: 6558
[11] Hu T, Ma K, Topping T D, Saller B, Yousefiani A, Schoenung J M, Lavernia E J. Scr Mater, 2014; 78-79: 25
[12] Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1
[13] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[14] Zhuang Z, Cui Y N, Gao Y, Liu Z L. Adv Mech, 2011; 41: 647 (庄 茁, 崔一南, 高 原, 柳占立. 力学进展, 2011; 41: 647)
[15] Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Tang M, Woodward C. Acta Mater, 2008; 56: 3245
[16] Liu J, Zhu G H, Mao W M, Subramanian S V. Mater Sci Eng, 2014; A607: 302
[17] Stroh A N. Adv Phys, 1957; 6: 418
[18] Smith E. Acta Metall, 1966; 14: 985
[19] McMahon C J, Cohen M. Acta Metall, 1965; 13: 591
[20] Knott J F. Fundamentals of Fracture Mechanics. New York: John Wiley-Halsted Press, 1973: 98
[21] Lin T, Evans A G, Ritchie R O. Metall Trans, 1987; 18A: 641
[22] Curry D A, King J E. Met Sci, 1978; 12: 247
[23] Yu Y N,Yang P,Qiang W J,Chen L. Fundament of Materials Science. Beijing: Higher Education Press, 2006: 537 (余永宁,杨 平,强文江,陈 冷. 材料科学基础. 北京: 高等教育出版社, 2006: 537)
[24] Wu S J, Davis C L. Mater Sci Eng, 2004; A387-389: 456
[25] Sato S, Wagatsuma K, Suzuki S, Kumagai M, Imafuku M, Tashiro H, Kajiwara K, Shobu T. Mater Charact, 2013; 83: 152
[26] Veistinen M K, Lindroos V K. Scr Metall, 1984; 18: 185
[27] Deng W, Gao X M, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 533 (邓 伟, 高秀梅, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)
[28] Yang P. Electron Back Scattering Diffraction Technique and its Application. Beijing: Metallurgical Industry Press, 2007: 157 (杨 平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 157)
[29] Zhu G, Mao W, Yu Y. Scr Mater, 2000; 42: 37
[30] Mao W M, Chen L, Yu Y N. Chin Sci Bull, 2002; 47: 1540 (毛卫民, 陈 冷, 余永宁. 科学通报, 2002; 47: 1540)
[31] Chin G Y. Metall Trans, 1972; 3: 2213
[32] Franciosi P. Acta Metall, 1983; 31: 1331
[33] Eshelby J D, Frank F C, Nabarro F R N. Philos Mag, 1951; 742: 351
[34] Gao H L. Pipeline Steel and Pipeline Pipe. Beijing: China Petrochemical Press, 2012: 8 (高惠临. 管线钢与管线钢管. 北京: 中国石化出版社, 2012: 8)
[35] Ohashi T, Kawamukai M, Zbib H. Int J Plast, 2007; 23: 897
[36] Cheng C, Jie M, Chan L, Chow C L. Int J Mech Sci, 2009; 49: 217
[37] Zhao M, Yin F, Hanamura T, Nagai K, Atrens A. Scr Mater, 2007; 57: 857
[38] Hanamura T, Yin F, Nagai K. ISIJ Int, 2004; 44: 610
[39] Park K T, Han S Y, ShinD H, LeeY K, Lee K J, Lee K S. ISIJ Int, 2004; 44: 1057
[40] Song R, Pong D, Raabe D. Acta Mater, 2005; 53: 4881
[41] Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M. Mater Lett, 2010; 64: 15
[42] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[9] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[10] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[11] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.