Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 904-912    DOI: 10.11900/0412.1961.2014.00635
  本期目录 | 过刊浏览 |
T250马氏体时效钢激光焊接-时效处理接头的强韧性*
李坤1,单际国1,2(),王春旭3,田志凌3
2 清华大学先进成形制造教育部重点实验室, 北京 100084
3 钢铁研究总院特殊钢研究所, 北京 100081
STRENGTH AND TOUGHNESS OF T250 MARAGING STEEL JOINT HYBRID-TREATED WITH LASER WELDING AND AGING
Kun LI1,Jiguo SHAN1,2(),Chunxu WANG3,Zhiling TIAN3
1 Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
3 Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081
引用本文:

李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
Kun LI, Jiguo SHAN, Chunxu WANG, Zhiling TIAN. STRENGTH AND TOUGHNESS OF T250 MARAGING STEEL JOINT HYBRID-TREATED WITH LASER WELDING AND AGING[J]. Acta Metall Sin, 2015, 51(8): 904-912.

全文: PDF(12993 KB)   HTML
摘要: 

对T250马氏体时效钢进行光纤激光焊接和时效处理, 研究了焊前时效和焊后时效条件下接头的强韧性并分析了原因. 结果表明, 焊前时效处理接头的强韧性较差, 抗拉强度为时效态母材的62%, 静力韧度为28%; 焊后时效处理的接头的强韧性较好, 抗拉强度达到了时效态母材的98%, 静力韧度达到了71%. 焊缝区是影响焊接-时效处理接头强韧性的关键区域, 焊缝中弥散析出的Ni3(Ti, Mo)颗粒相是焊后时效处理的接头强韧性优于焊前时效处理的接头的根本原因. Ni3(Ti, Mo)析出相对接头的抗拉强度和弹性变形阶段的静力韧度有利, 对接头塑性变形阶段的静力韧度有双重影响. 晶界逆转变奥氏体对接头的抗拉强度和弹性变形阶段的静力韧度影响不大, 但对接头塑性变形阶段的静力韧度不利.

关键词 T250马氏体时效钢激光焊接接头强韧性焊接-时效静力韧度Ni3(Ti,Mo)颗粒逆转变奥氏体    
Abstract

Maraging steels are leading members of the ultra-high strength steel family due to a combination of two solid state reactions: martensitic transformation and subsequent ageing. These steels can be hardened by the precipitation of refined Ni3(Ti, Mo) intermetallic particles. They have been widely used in the military and aerospace applications such as solid rocket motor cases and submarine shells due to their high strength and toughness. The T250 maraging steel has used Ti as one of the primary strengthening elements to replace Co, which decreases the cost of maraging steels. Its properties are comparable to the standard Co-bearing grades in the 1.4~2.1 GPa strength levels. It possesses good weldability without porosity in the weld and other weld defects. However, the combination of strength and toughness of welded joints is the main problem which has not been solved well via different welding methods so far. In this work, T250 maraging steel plate with 2 mm thickness was hybrid-treated with laser welding and aging treatment. The strength and toughness of welded joints aged before and after welding were investigated. The microstructures of parent metals and welded joints were observed with OM and SEM. Chemical compositions in parent metals and weld zones were analyzed with EPMA. The tensile strength and static toughness were acquired with the auxiliary device of Gleeble machine and could represent strength and toughness of the welded joints. The results show that the tensile strength and static toughness of the welded joint aged before welding are 62% and 28% that of the aged parent metal, respectively. However, the tensile strength and static toughness of the welded joint aged after welding reach 98% and 71% that of the aged parent metal, respectively. The weld metal is the key zone to influence the strength and toughness of the welded joints. Ni3(Ti, Mo) precipitates in the weld metal are the intrinsic reason resulting in that the strength and toughness of the welded joint aged after welding are superior to that of the welded joint aged before welding. Ni3(Ti, Mo) precipitates are beneficial to the strength and static toughness in the elastic deformation stage, and it has a dual effect on the static toughness in the plastic deformation stage of the welded joints. The reverted austenite has a negligible effect on the strength and static toughness in the elastic deformation stage, while it is detrimental to the static toughness in the plastic deformation stage of the welded joints.

Key wordsT250 maraging steel    laser welded joint    strength and toughness    welding and aging    static toughness    Ni3(Ti,Mo) particle    reverted austenite
    
图1  激光焊接示意图
图2  拉伸试样尺寸
Material sb / MPa d1 / % d2 / % UOT / (MJ·m-3) U1 / (MJ·m-3) U2 / (MJ·m-3) Fracture location
As-received parent metal 885.4 3.0 7.2 87.3 20.3 67.0 -
Aged parent metal 1646.8 3.8 2.8 70.1 26.7 43.4 -
Aged before welding 1016.5 2.2 1.3 19.7 8.1 11.6 Weld metal
Welded without aging 886.8 3.1 7.0 87.6 21.1 66.5 Base metal
Aged after welding 1618.2 3.6 1.0 49.6 25.7 23.9 Weld metal
表1  不同热处理状态母材和焊接-时效处理工艺接头的拉伸强度及静力韧度
图3  不同热处理状态母材及焊接-时效处理工艺焊缝的OM像
图4  不同热处理状态母材及焊接-时效处理工艺接头焊缝的SEM像
图5  焊后时效处理接头焊缝处的BSE像
Material Location Ni Mo Ti Al Cr Fe
As-received parent metal Cell center 18.96 3.00 1.49 0.110 0.30 76.14
Cell boundary 19.01 3.01 1.52 0.090 0.28 76.09
Aged parent metal Cell center 19.00 3.02 1.49 0.120 0.29 76.08
Cell boundary 19.02 3.01 1.50 0.100 0.31 76.06
Welded without aging Cell center 18.38 2.77 1.32 0.097 0.28 77.15
Cell boundary 19.46 3.12 1.53 0.099 0.30 75.49
Aged after welding Cell center 17.20 2.34 1.08 0.099 0.30 78.98
Cell boundary 20.67 3.48 1.72 0.096 0.29 73.74
表2  不同热处理状态母材及焊接-时效处理接头焊缝区晶内和晶界处化学成分的EPMA分析
图6  不同焊接-时效处理工艺接头横截面的OM像
图7  不同焊接-时效处理工艺接头的显微硬度
图8  不同焊接-时效处理工艺接头热影响区的SEM像
图9  不同热处理状态母材及焊接-时效处理工艺接头焊缝断口的SEM像
[1] Decker R F, Floreens S. In: Wilson R K ed., Maraging Steels: Recent Developments and Applications, Huntington, West Virginia: The Minerals, Metals & Materials Society, 1988: 1
[2] Liang D M, Zhu Y Z, Liu G H. Heat Treat Met, 2010; 35(12): 34 (梁冬梅, 朱远志, 刘光辉. 金属热处理, 2010; 35(12): 34)
[3] Jiang Y, Yin Z D. Mater Sci Technol, 2004; 12(1): 108 (姜 越, 尹钟大. 材料科学与工艺, 2004; 12(1): 108)
[4] He Y, Yang K, Kong F Y, Qu W S, Su G Y. Acta Metall Sin, 2002; 38: 278 (何 毅, 杨 柯, 孔凡亚, 曲文生, 苏国跃. 金属学报, 2002; 38: 278)
[5] Vasudevan V K, Kim S J, Wayman C M. Metall Mater Trans, 1995; 21A: 2655
[6] Fan Z B, Han D, Duan S C. Aerosp Technol, 2010; 10(5): 41 (范赵斌, 韩 冬, 段述苍. 航空航天技术, 2010; 10(5): 41)
[7] Tsay L W, Huang W B, Chen C. J Mater Eng Perform, 1997; 6(2): 182
[8] Sundaresan S, Manirajan M, Nageswara R B. Mater Des, 2010; 31: 4921
[9] Subhananda R A, Venkata R G, Nageswara R B. Eng Failure Anal, 2005; 12: 325
[10] Floreen D S, Bayer A M. In: Wilson R K ed., Maraging Steels: Recent Developments and Applications, Huntington, West Virginia: The Minerals, Metals & Materials Society, 1988: 39
[11] Shamantha C R, Narayanan R, Iyer K J L, Radhakrishnan V M, Seshadri S K, Sundararajan S, Sundaresan S. Sci Technol Weld Joining, 2000; 5: 329
[12] Gupta R, Reddy R, Mukherjee M K. Weld World, 2012; 56(9): 69
[13] Mo D F, He G Q, Hu Z F, Shi Y L, Zhang W H. Trans China Weld Inst, 2008; 29(4): 29 (莫德锋, 何国求, 胡正飞, 施延龄, 张卫华. 焊接学报, 2008; 29(4): 29)
[14] Lee Y J, Lee I K, Wu S C, Kung M C, Chou C P. Sci Technol Weld Joining, 2007; 12: 266
[15] Reddy G M, Rao V V, Raju A V S. J Mater, 2013; 223(4): 149
[16] Tsay L W, Chen C, Chan S L I. Int J Mater Prod Technol, 1995; 10(1-2): 132
[17] Fanton B L, Abdalla A J, Fernandes M S. Weld J, 2014; 93: 362
[18] Zhao Z Y. The Design of Alloy Steels. Beijing: National Defense Industry Press, 1999: 64 (赵振业. 合金钢设计. 北京: 国防工业出版社, 1999: 64)
[19] Zhang L Y, Yang G, Huang C X, Chen W L, Wang L M. Acta Metall Sin, 2008; 44: 409 (张凌义, 杨 钢, 黄崇湘, 陈为亮, 王立明. 金属学报, 2008; 44: 409)
[20] Zhang Z M, Zhang X, Wang Q, Li B C. J Mech Eng, 2012; 48(18): 67 (张治民, 张 星, 王 强, 李保成. 机械工程学报, 2012; 48(18): 67)
[21] Lu L, Li Z B, Bi Z Y, Xue L H, Ma X. J Iron Steel Res, 2014; 26(6): 67 (芦 琳, 李周波, 毕宗岳, 薛磊红, 马 璇. 钢铁研究学报, 2014; 26(6): 67)
[22] Yin Z D, Li X D, Li H B, Lai Z H. Acta Metall Sin, 1995; 43: 7 (尹钟大, 李晓东, 李海滨, 来忠红. 金属学报, 1995; 43: 7)
[23] Tsay L W, Lee W C, Luu W C, Wu J K. Corros Sci, 2002; 44: 1311
[24] Ye H Q, Zou B S. Acta Metall Sin, 1979; 15: 69 (叶恒强, 邹本三. 金属学报, 1979; 15: 69)
[25] Kenyon N. Weld J, 1968; 47(5): 193
[26] Narayanan P R, Sreekumar K, Natarajan A, Sinha P P. J Mater Sci, 1990; 25: 4587
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[3] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[4] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[5] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[6] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[7] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
[8] 冯春 方鸿生 白秉哲 郑燕康. 0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性[J]. 金属学报, 2010, 46(4): 473-478.
[9] 周倩青 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化[J]. 金属学报, 2009, 45(10): 1249-1254.
[10] 刘东雨; 徐鸿; 杨昆; 白秉哲; 方鸿生 . 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响[J]. 金属学报, 2004, 40(8): 0-886 .
[11] 尹钟大;李晓东;李海滨;来忠红. 18Ni马氏体时效钢时效机理的研究[J]. 金属学报, 1995, 31(1): 7-13.
[12] 张明星;康沫狂. Si对低碳贝氏体钢组织和性能的影响[J]. 金属学报, 1993, 29(1): 6-10.
[13] 陈大明;康沫狂;谭若兵. 40CrMnSiMoVA钢准贝氏体的疲劳性能[J]. 金属学报, 1991, 27(6): 64-69.