Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 943-950    DOI: 10.11900/0412.1961.2014.00622
  本期目录 | 过刊浏览 |
温度对高W含量K416B镍基合金拉伸行为的影响*
谢君,于金江(),孙晓峰,金涛,杨彦红
INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT
Jun XIE,Jinjiang YU(),Xiaofeng SUN,Tao JIN,Yanhong YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(10840 KB)   HTML  
摘要: 

在不同温度对高W含量K416B镍基合金进行拉伸性能测试及组织形貌观察, 研究了温度对合金拉伸行为的影响规律. 结果表明, 在20~800 ℃, 合金的屈服强度与抗拉强度随着温度的升高而增加, 高于800 ℃后, 合金的拉伸性能逐渐降低. 合金室温拉伸变形特征为位错剪切g′相或以Orowan机制越过g′ 相, 且切入g′ 相位错可分解形成层错. 随着温度升高, 合金基体内的位错密度逐渐增加, 其中, 800 ℃拉伸时, 合金基体内形成高密度位错缠结, 可起形变强化作用, 是合金具有较高拉伸强度的主要原因. 随着温度进一步升高, 切入g′ 相的位错数量增加, 致使合金强度逐渐降低. 在中低温条件下, 裂纹主要沿大尺寸M6C碳化物处萌生与扩展, 致使合金发生脆性断裂. 而高温拉伸期间, 合金主要以微孔聚集方式沿g +g′共晶界面发生连接开裂, 是合金发生韧性断裂的主要原因.

关键词 K416B镍基合金拉伸行为变形特征断裂机制    
Abstract

Ni-based superalloys with high content of W are often used to manufacture gas turbine vanes and high temperature forging dies due to high temperature capability and low cost. The microstructure of Ni-based superalloys consists of g matrix, g′ phase and carbides generally. The deformation mechanisms of alloy mainly include dislocation loops formation, shearing of dislocation into g′ phase and formation of anti-phase boundary (APB) and stacking fault. Although the deformation mechanism of Ni-based superalloys has been studied widely, the relationship between tensile property and deformation mechanism of K416B superalloy at different temperature is still unclear up to now. Therefore, the influence of temperature on tensile behaviors of K416B Ni-based superalloy with high W content was investigated in the present work by means of tensile test at different temperatures. It has been found that the yield and tensile strengths of K416B alloy increase with rising temperature at 20~800 ℃. When the temperature exceeds 800 ℃, the tensile property of the alloy decreases gradually. The deformation feature of the alloy during tensile test at room temperature is that the dislocations shear into g′ phase or cross g′phase by Orowan mechanism. As the dislocations shear into g′ phase, they decompose to form the stacking fault. The dislocation density in the matrix of the alloy increases with the rising temperature and the dislocation tangles in the matrix play the role of strengthening in the alloy during tensile test at 800 ℃. As the temperature further enhancing, the amount of dislocations shearing into g′ phase increases and then the tensile strength of the alloy decreases. Under the condition of middle-low temperature, the brittle fracture occurs in the alloy due to the fact that the cracks are initiated and propagated along M6C carbide with large size. During tensile test at high temperatures, the tensile fracture mode of the alloy is micro-porous aggregation along the g +g′ eutectic interface, which is the main reason for the alloy exhibiting the ductile fracture.

Key wordsKEY WORKS    K416B Ni-based superalloy    tensile behavior    deformation feature    fracture mechanism
     出版日期: 2015-05-22
基金资助:* 国家重点基础研究发展计划项目2010CB631200和2010CB631206及国家自然科学基金项目50931004资助

引用本文:

谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT. Acta Metall, 2015, 51(8): 943-950.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00622      或      http://www.ams.org.cn/CN/Y2015/V51/I8/943

图1  铸态K416B合金的组织形貌
图2  铸态K416B合金的XRD谱
图3  K416B合金在不同温度的拉伸性能
图4  K416B合金在不同温度下的应力-应变曲线
图5  K416B合金中低温拉伸变形后的TEM像
图6  K416B合金高温拉伸变形后的TEM像
图7  在不同温度下K416B合金拉伸断裂后的SEM像
图8  在不同温度下K416B合金拉伸断裂后断口形貌的SEM像
[1] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z. Mater Sci Eng, 2009; A508: 141
[2] Kim I S, Choi B G, Hong H U, Do J, Jo C Y. Mater Sci Eng, 2014; A593: 55
[3] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[4] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[5] Yang J X, Sun Y, Jin T, Sun X F, Hu Z Q. Acta Metall Sin, 2014; 50: 839 (杨金侠, 孙 元, 金 涛, 孙晓峰, 胡壮麒. 金属学报, 2014; 50: 839)
[6] Zhang L, Qi F, Zhang W H, Sun W R, Xin X, Hu Z Q. Rare Met Mater Eng, 2012; 41: 1965 (张 磊, 祁 峰, 张伟红, 孙文儒, 信 昕, 胡壮麒. 稀有金属材料与工程, 2012; 41: 1965)
[7] Zheng L, Gu C Q, Zheng Y R. Scr Mater, 2004; 50: 435
[8] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[9] Yao X X, Fang Y, Kim H T, Choi J. Mater Charact, 1997; 38: 97
[10] Liu P P, Zhao M Z, Zhu Y M, Bai J W, Wan F R, Zhan Q. J Alloys Compd, 2013; 579: 599
[11] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[12] Sajjadi S A, Nategh S, Isac M, Zebarjad S M. J Mater Process Technol, 2004; 155-156: 1900
[13] Wang X G, Liu J L, Jin T, Sun X F. Mater Sci Eng, 2014; A598: 154
[14] Yang G X, Xu Y F, Jiang L, Liang S H. Prog Nat Sci: Mater Int, 2011; 21: 418
[15] Bai G H, Li J S, Hu R, Tang Z W, Xue X Y, Fu H Z. Mater Sci Eng, 2011; A528: 1974
[16] Lian Z W, Yu J J, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2008; A489: 227
[17] Zhou P J, Yu J J, Sun X F, Guan H R, Hu Z Q. Trans Nonferrous Met Soc China, 2005; 15: 86
[18] Liu J L, Yu J J, Jin T, Sun X F, Guang H R, Hu Z Q. Trans Nonferrous Met Soc China, 2011; 21: 1518
[19] Kumar A L, Chaitanya N B, Kumar B S, Nath V S, Singh P K. Procedia Mater Sci, 2014; 5: 1090
[20] Wang L, Wang S, Song X, Liu Y, Xu G H. Int J Fatigue, 2014; 62: 210
[21] Bai G H, Li J S, Hu R, Xue X Y, Ma J, Hu S T, Fu H Z. Rare Met Mater Eng, 2011; 40: 1300 (柏广海, 李金山, 胡 锐, 薛祥义, 马 健, 胡胜天, 傅恒志. 稀有金属材料与工程, 2011; 40: 1300)
[22] Kaoumi D, Hrutkay K. J Nucl Mater, 2014; 454: 265
[23] Yang G X, Xu Y F, Jiang L, Liang S H. Prog Nat Sci: Mater Int, 2011; 21: 418
[24] Liu J, Yang H, Sun Z C, Tang W T. Ordnance Mater Sci Eng, 2014; 37(6): 25 (刘 君, 杨 合, 孙志超, 唐文婷. 兵器材料科学与工程, 2014; 37(6): 25)
[25] Unocic R R, Viswanathan G B, Sarosi P M, Karthikeyan S, Li J, Mills M J. Mater Sci Eng, 2008; A483-484: 25
[26] Xie J, Tian S G, Liu J, Zhou X M, Su Y. Acta Metall Sin, 2013; 49: 838 (谢 君, 田素贵, 刘 姣, 周晓明, 苏 勇. 金属学报, 2013; 49: 838)
[1] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[2] 王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
[3] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[4] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[5] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[6] 郑凯,王艳丽,李时磊,吕绪明,王西涛,薛飞. 长期热老化后Z3CN20-09M不锈钢的微观组织与拉伸断裂行为[J]. 金属学报, 2013, 49(2): 175-180.
[7] 黄志伟; 袁福河; 王中光; 朱世杰; 王富岗 . M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报, 2007, 43(10): 1025-1030 .
[8] 黄立业; 徐可为; 吕坚 . 类金刚石碳膜在纳米划擦过程中的弹-塑性变形及断裂机制分析[J]. 金属学报, 2001, 37(7): 733-736 .
[9] 秦蜀懿; 张国定 . 高强度高韧性铝合金基复合材料的制备和断裂机制[J]. 金属学报, 2000, 36(3): 325-328 .
[10] 陆永浩; 张永刚; 乔利杰; 王燕斌; 陈昌麒; 褚武扬 . 全层状结构的γ-TiAl中裂纹扩展的TEM原位观察[J]. 金属学报, 1999, 35(12): 1233-1236 .
[11] 王自东;胡汉起;李春玉;刘伯操. 金属基“内晶型”复合材料及其制备[J]. 金属学报, 1995, 31(13): 40-43.
[12] 杨扬;张新明;李正华;李青云. TA2/A3爆炸复合界面微观断裂机制的SEM原位研究[J]. 金属学报, 1994, 30(9): 409-415.
[13] 刘中豪;陈廉. 含氢马氏体时效钢低温力学性能行为与断裂机制[J]. 金属学报, 1990, 26(4): 54-61.
[14] 邢志强;黄淑菊;宋余九;涂铭旌. 低碳钢的组织对腐蚀疲劳的影响[J]. 金属学报, 1988, 24(6): 476-481.