Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 784-790    DOI: 10.11900/0412.1961.2014.00606
  本期目录 | 过刊浏览 |
超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*
李小琳,王昭东(),邓想涛,张雨佳,类承帅,王国栋
EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL
Xiaolin LI,Zhaodong WANG(),Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
Xiaolin LI, Zhaodong WANG, Xiangtao DENG, Yujia ZHANG, Chengshuai LEI, Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. Acta Metall Sin, 2015, 51(7): 784-790.

全文: PDF(8339 KB)   HTML
摘要: 

以复合添加Nb, V和Ti的低碳微合金钢为研究对象, 采用热模拟试验机模拟高温轧制+超快速冷却+缓冷工艺, 采用OM, HRTEM和显微硬度计等对超快冷至不同温度实验钢的组织转变和析出规律进行研究. 结果表明, 随着超快冷终冷温度的升高, 显微组织由贝氏体向珠光体和铁素体转变, 碳化物形核位置从贝氏体转变为铁素体, 铁素体中的析出物密度大于贝氏体中的, 且在620 ℃达到最大. 超快冷至不同温度时析出物的尺寸均小于10 nm, 纵横比均接近于1, 即析出物形态更接近于球形, 且随终冷温度的降低, 析出物尺寸逐渐减小. 利用Orowan机制计算了析出强化增量, 得出在620 ℃析出强化对屈服强度的贡献最大, 可达到25.6%.

关键词 Nb-V-Ti微合金钢超快冷硬度析出强化    
Abstract

High strength low-alloy (HSLA) steel has been widely used in buildings, bridges, ships and automobiles because of the remarkable high strength and forming property. Conventional HSLA steels are strengthened by a combination of grain refinement, solid-solution strengthening and precipitation hardening, and the contribution of precipitation hardening is considered to be minor, since many of the alloying elements are added to HSLA steels in the past basically for the strengthening of grain refinement. However, in recent research, yield strengths up to 780 MPa have been achieved in Ti and Mo bearing HSLA sheet steels by producing microstructures that consist of a ferritic matrix with nanometer-sized carbides, and the precipitation strengthening has been estimated to be approximately 300 MPa. Nowadays, thermo mechanical controll process (TMCP) is widely used to process HSLA steels, the final temperature of ultra-fast cooling (UFC) plays a decisive role for microstructure evolution and precipitation behavior, and finally determines the mechanical properties of the steels. In this work, the effects of final temperature after UFC on microstructural evolution, precipitation behavior and micro-hardness of Nb-V-Ti bearing low alloy steel were studied by using the thermal mechanical simulator, OM, HRTEM and micro-hardness instrument. The results showed that the microstructure and nucleation sites of micro-alloy carbides changed with final temperature after UFC. The microstructure changed from bainite to pearlite and ferrite and the nucleation sites changed from bainite to ferrite with final cooling temperature increasing. The number density of the precipitates in ferrite matrix was greater than that in bainite. Furthermore, the number density of the nanometer sized carbides got the maximum values at 620 ℃. The aspect ratios of the precipitates were close to 1, which meat that the precipitation morphology close to spherical. The sizes of the carbides were all less than 10 nm and became smaller with the decrease of final cooling temperature. Through the calculation by Orowan mechanism, the contributions of the precipitation strengthening to yield strength could reach 25.6% at the final cooling temperature of 620 ℃.

Key wordsNb-V-Ti bearing low alloy steel    ultra-fast cooling    hardness    precipitation strengthening
    
基金资助:*国家自然科学基金资助项目51234002
图1  超快冷至不同温度的缓冷与动态连续冷却工艺曲线图
图2  实验钢超快冷至不同温度时的OM像
图3  实验钢超快冷至不同温度时的析出物形貌
图4  实验钢超快冷至不同温度时纳米碳化物的HRTEM像
图5  实验钢超快冷至不同温度时的显微硬度
图6  实验钢超快冷至不同温度时基体的屈服强度及析出强化增量
[1] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[2] Ghosh A, Das S, Chatterjee S, Rao R P. Mater Charact, 2006; 56: 59
[3] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[6] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578 (王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[7] You Y, Wang X M, Shang C J. Acta Metall Sin, 2012; 48: 1290 (由 洋, 王学敏, 尚成嘉. 金属学报, 2012; 48: 1290)
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[10] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[11] Park J W, Kim J W, Chung Y H. Scr Mater, 2004; 51: 181
[12] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[13] Lu J X, Wang G D. Iron Steel, 2005; 40(9): 69 (陆匠心, 王国栋. 钢铁, 2005; 40(9): 69)
[14] Chen J, Lü M Y, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2014; 50: 524 (陈 俊, 吕梦阳, 唐 帅, 刘振宇, 王国栋. 金属学报, 2014; 50: 524)
[15] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441 (陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[16] Tang S, Liu Z Y, Wang G D, Misra R D K. Mater Sci Eng, 2013; A580: 257
[17] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251 (段修钢, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[18] Wang Z Q, Mao X P, Yang Z G, Sun X J, Yong Q L, Li Z D, Weng Y Q. Mater Sci Eng, 2011; A529: 459
[19] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754
[20] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163
[21] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2005; A394: 339
[22] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012; 48: 621 (王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[23] Huang X Y. Microstructure of Materials and Its Electron Microscopy Analysis. Beijing: Metallurgical Industry Press, 2008: 539 (黄孝瑛. 材料微观结构的电子显微分析. 北京: 冶金工业出版社, 2008: 539)
[24] Zhou R S. Physics of Metals. ShangHai: Higher Education Press, 1992: 340 (周如松. 金属物理. 上海: 高等教育出版社, 1992: 340)
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[4] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[7] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[9] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[10] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[11] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[12] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[13] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[14] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[15] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.