Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 807-814    DOI: 10.11900/0412.1961.2014.00592
  本期目录 | 过刊浏览 | 高级检索 |
760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*
郝宪朝,张龙,熊超,马颖澈(),刘奎
EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY
Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA(),Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
下载:  HTML  PDF(7294KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用OM, SEM和TEM研究了一种Ni-Cr-W-Fe合金在760 ℃长期时效过程中的显微组织变化, 测试了合金室温和高温力学性能, 对拉伸断口进行了分析. 结果表明, 1100 ℃固溶后合金平均晶粒尺寸约为80 mm, 晶内包含退火孪晶. 760 ℃时效后合金中析出M23C6g' 相. g' 相尺寸约为29 nm, 体积分数约为19%. 760 ℃长期时效后, g' 颗粒平均尺寸与时间t满足Ostwald方程. 固溶态合金具有优异的室温塑性, 拉伸断口具有韧性断裂形貌. 时效态合金室温屈服强度明显增加, 塑性下降. 随760 ℃保温时间延长, 合金室温和高温屈服强度缓慢降低. 与时效态合金相比, 1000~3000 h时效后的合金室温塑性降低, 高温塑性维持在15%左右, 与时效态基本相当.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  Ni-Cr-W-Fe合金  长期时效  g'   拉伸性能    
Abstract: 

Significant efforts on development of advanced ultra-supercritical (A-USC) fossil fired power plants with steam conditions of 700 ℃ and 30 MPa or higher have been made in recent years. The most important consideration is the development of materials for superheater and reheater tubes with working temperature as high as 760 ℃. During the design and application of these materials, phase stability, creep rupture strength and corrosion performance at 700~760 ℃ should be evaluated. A new type Ni-Cr-W-Fe alloy has been designed for A-USC power plants and the microstructure and mechanical properties of Ni-Cr-W-Fe alloy after long-term aging at 760 ℃ was investigated using OM, SEM, TEM and tensile testing in this work. The fractographs of tensile samples were observed. The results show that the average gain size of specimen after solution-annealing at 1100 ℃ is about 80 μm with twin planes present in the matrix. The major precipitates after aging at 760 ℃ for 16 h are M23C6 and g'. The average particle size and the volume fraction of g' phase are approximately 29 nm and 19%, respectively. The coarsening behavior of g' during long-term aging at 760 ℃ follows Ostwald ripening theory. The solution-annealed Ni-Cr-W-Fe alloy performs excellent ductility at room temperature and the fracture mode of is ductile. The room temperature tensile strengths increase obviously with the decreasing of elongation and reduction of area after aging treatment. The yield strengths at both room and elevated temperatures decrease gradually with the extending aging time at 760 ℃. The tensile ductility at room temperature of Ni-Cr-W-Fe alloy decreases after aging from 1000 to 3000 h, while the elevated temperature ductility varies mildly and keeps at approximately 15%.

Key words:  Ni-Cr-W-Fe alloy    long-term aging    g' phase    tensile property
          接受日期:  2015-03-05           发布日期:  2015-05-18      期的出版日期:  2015-07-11
引用本文:    
郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA,Kui LIU. EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY. Acta Metall, 2015, 51(7): 807-814.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00592  或          http://www.ams.org.cn/CN/Y2015/V51/I7/807
图1  1100 ℃固溶和760 ℃时效处理后Ni-Cr-W-Fe合金的显微组织
图2  760 ℃长期时效后Ni-Cr-W-Fe合金的SEM像
图3  760 ℃长期时效后Ni-Cr-W-Fe合金晶界碳化物TEM像
图4  经760 ℃长期时效后Ni-Cr-W-Fe 合金中g’相形貌与分布
图5  Ni-Cr-W-Fe 合金中g’相平均颗粒尺寸及长大倾向与时效时间的关系
Heat treatment Test temperature / ℃ Rp0.2 / MPa Rm / MPa A / % Z / %
1100 ℃, 30 min 25 319 732 64 77.0
1100 ℃, 30 min+ 25 754 1088 36 48.0
760 ℃, 16 h 704 700 920 10 17.0
750 645 810 12 14.5
表1  1100 ℃固溶和760 ℃时效处理后Ni-Cr-W-Fe合金拉伸性能
图6  1100 ℃固溶和760 ℃时效后Ni-Cr-W-Fe合金的拉伸断口形貌
图7  760 ℃长期时效时Ni-Cr-W-Fe合金的力学性能
图8  760 ℃长期时效后Ni-Cr-W-Fe合金的拉伸断口形貌
[1] Lin F S, Xie X S, Zhao S Q, Dong J X. J Chin Soc Power Eng, 2011; 31: 960 (林富生, 谢锡善, 赵双群, 董建新. 动力工程学报, 2011; 31: 960)
[2] Viswanathan R, Purgert R, Goodstine R S, Tanzosh J, Stanko G, Shingledecker J P, Vitalis B. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 1
[3] Nakamura S, Kawashima H, Takei Y, Saito N, Tanaka Y, Nishimoto S. Mitsubishi Heavy Ind Tech Rev, 2011; 48(3): 8
[4] Viswanathan V, Purgert R, Rawls P. Adv Mater Proc, 2008; 8: 47
[5] Knezevic V, Schneider A, Landier C. Procedia Eng, 2013; 55: 240
[6] Van Stone R W. In: Strang A ed., Proc of Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, London: IOM Communications Ltd., 2000: 91
[7] Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221 (郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[8] Allen D, Keustermans J P, Grijbels S, Bicego V. Mater High Temp, 2004; 21: 53
[9] Patel S J, de Barbadillo J J, Baker B A, Gollihue R D. Procedia Eng, 2013; 55: 246
[10] Lin F, Chen S, Xie X. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 46
[11] Tokairin T, Dahl K V, Danielsen H K, Grumsen H B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[12] Wang T T, Wang C S, Guo J T, Zhou L Z. Mater Sci Forum, 2013; 747-748: 647
[13] Viswanathan R, Sarver J, Tanzosh J M. J Mater Eng Perform, 2006; 15: 256
[14] Wu Q, Hyojin S, Swinderman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569
[15] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[16] Sims C T, Hagel W C. The Superalloys. New York: John Wiley & Sons, 1972: 55
[17] MacKay R A, Nathal M V. Acta Metall Mater, 1990; 38: 993
[18] Kim H T, Chun S S, Yao X X. J Mater Sci, 1997; 32: 4917
[19] Ardell A J. Acta Metall, 1968; 16: 511
[20] Lifscitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[21] Footer P K, Richards B P. J Mater Sci, 1982; 17: 2141
[22] Wagner C. Z Elektrochem, 1961; 65: 581
[23] Li X, Saunders N, Miodownik A P. Metall Mater Trans, 2002; 33A: 3367
[24] Patil R V, Kale G B. J Nucl Mater, 1996: 230: 57
[25] Baldan A. J Mater Sci, 2002; 37: 2379
[26] Kong Y H, Chen Q Z. Mater Sci Eng, 2004; A366: 135
[27] Huang Q Y,Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 29 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 29)
[1] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
[2] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[3] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[4] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[5] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[6] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[7] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[8] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[9] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[10] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[11] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[12] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[13] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
[14] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[15] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed