Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 407-416    DOI: 10.11900/0412.1961.2014.00576
  本期目录 | 过刊浏览 |
700 MPa级高塑低碳低合金钢的多相组织调控及性能
周文浩(), 谢振家, 郭晖, 尚成嘉
北京科技大学材料科学与工程学院, 北京 100083
REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY
ZHOU Wenhao(), XIE Zhenjia, GUO Hui, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
Wenhao ZHOU, Zhenjia XIE, Hui GUO, Chengjia SHANG. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY[J]. Acta Metall Sin, 2015, 51(4): 407-416.

全文: PDF(12510 KB)   HTML
摘要: 

通过临界退火、临界回火以及回火的多步热处理方式, 研究了低碳低合金钢的组织演变与力学性能. 结果表明, 临界退火后的组织为板条状的临界铁素体及贝氏体/马氏体的双相组织. 经临界回火后, 为临界铁素体、回火贝氏体/马氏体以及残余奥氏体的多相组织. 残余奥氏体呈粒状和条状, 分布在铁素体/贝氏体(马氏体)相界面及贝氏体/马氏体板条之间, 含量高达29%, 并在回火后保持稳定, 主要通过C, Mn, Ni和Cu在逆转奥氏体中的富集来稳定. 临界退火及回火过程中, NbC在铁素体及贝氏体/马氏体中析出, 呈球状、椭圆形或不规则形状, 平均尺寸为10 nm; 富Cu的析出相在临界回火及回火过程中形成, 呈球状分布于铁素体及残余奥氏体中, 尺寸在10~30 nm 之间. 通过残余奥氏体的应变诱导塑性(TRIP)效应及纳米析出相的析出强化作用, 实验钢具有优异的力学性能: 屈服强度高于700 MPa, 抗拉强度高于900 MPa, 均匀延伸率高于20%, 总延伸率高于30%.

关键词 高性能临界热处理多相组织残余奥氏体纳米析出相    
Abstract

Low carbon and low alloy steels require good combination of strength and ductility to ensure safety and stability of structures. Heat treatment in intercritical area can not only produce multi-phase microstructure, but also lead to the redistribution of alloying elements in different phases. Multi-step intercritical heat treatment is favorable to obtain retained austenite that is stabilized by repeated enrichment of alloying elements in reversed austenite and nanometer-sized precipitate that are primarily formed during tempering. Excellent mechanical properties are contributed by transformation-induced-plasticity effect of retained austenite and precipitation hardening effect of nanometer-size precipitates. In this work, the microstructural evolution and relative mechanical properties were investigated in a low carbon low alloy steel processed by a three-step heat treatment, namely, intercritical annealing, intercritical tempering and tempering. The microstructure was a typical dual-phase microstructure consisting of intercritical ferrite and bainite/martensite after intercritical annealing, and primarily comprised of intercritical ferrite, tempered bainite/martensite and retained austenite after intercritical tempering. Retained austenite with volume fraction of 29% distributed at the ferrite/bainite (martensite) boundaries and betweent bainitic/martensitic laths. Retained austenite was stabilized by enrichment of C, Mn, Ni and Cu in reversed austenite during the reversion transformation process. NbC precipitates with average size of 10 nm was formed in ferrite matrix and bainite/martensite, while Cu-containing particles in size range of 10~30 nm precipitated in ferrite and retained austenite during intercritical tempering and tempering process. The morphology of NbC precipitates was spherical, elliptical and irregular, and copper precipitates were spherical. With the combination of transformation-induced-plasticity (TRIP) effect of retained austenite and precipitation hardening, the steel possessed outstanding mechanical properties: yield strength > 700 MPa, tensile strength > 900 MPa, uniform elongation > 20%, and total elongation > 30%.

Key wordshigh performance    intercritical heat treatment    multi-phase microstructure    retained austenite    nanometer-sized precipitate
    
ZTFLH:  TG142.1  
基金资助:*国家重点基础研究发展计划资助项目 2010CB630801
作者简介: null

周文浩, 男, 1987年生, 博士生

图1  实验钢热处理工艺示意图
图2  膨胀法测得的实验钢在不同热处理阶段的相变点
图3  实验钢在不同工艺热处理后的OM像
图 4  实验钢在不同工艺热处理后的SEM像
Sample ss / MPa sb / MPa Ag / % A / %
Hot rolling 663 1015 6.3 17
A 686 1178 6.3 17
B 707 845 22.8 35
C 724 923 20.8 31
表1  实验钢在不同热处理阶段后的力学性能
图 5  实验钢在不同热处理阶段残余奥氏体的EBSD像及XRD谱
图6  试样B中残余奥氏体的TEM明场像和暗场像
图7  碳复型观察到的不同热处理阶段Nb的析出相TEM像及尺寸统计
Temperature / ℃ Phase Volum fraction / % Mass fraction / % Ms / ℃
C Mn Ni Cu
780 Austenite 45.0 0.2 3.1 1.4 1.4 333
Ferrite 55.0 - 1.2 0.7 0.6 -
660 Austenite 37.9 0.5 6.1 2.6 1.7 120
Ferrite 61.5 - 1.2 0.7 0.4 -
Cu 0.6 - 2.0 - 96.9 -
表2  实验钢经780 ℃临界退火和660 ℃临界回火30 min后各相中的合金元素分配
图 8  两步和三步热处理后铁素体中的Cu析出物的TEM像、尺寸统计和EDS
<table border="1" id="tb_80006AA6" align=""> <tr> <td height="75.59055118110237" id="tc_80006AA8">

Temperature

</td> </tr> </table>
Diffusion coefficient / (cm2·s-1) Diffusion distance / nm
C Mn Ni Cu C Mn Ni Cu
780 6.5×10-7 3.9×10-12 3.1×10-12 2.6×10-12 4.8×105 1185 1050 970
660 1.9×10-7 12.5×10-14 2.5×10-14 4.0×10-14 2.6×105 212 95 120
500 2.1×10-8 2.5×10-16 3.6×10-17 2.0×10-17 8.8×104 10 4 3
表3  奥氏体稳定化元素在不同温度下的扩散距离
[1] Dong H, Wang M Q, Weng Y Q. Iron Steel, 2010; 45(7): 3
[1] (董 瀚, 王毛球, 翁宇庆. 钢铁, 2010; 45(7): 3)
[2] Liu L, Yang Z G, Zhang C, Liu W B. Mater Sci Eng, 2010; A527: 7205
[3] Yoo J D, Hwang S W, Park K T. Mater Sci Eng, 2009; A508: 234
[4] Misra R D K, Challa V S A, Venkatsurya P K C, Shen Y F, Somani M C, Karjalainen L P. Acta Mater, 2015; 84: 339
[5] Lee T, Koyama M, Tsuzaki K, Lee Y H, Lee C S. Mater Lett, 2012; 75: 169
[6] Sugimoto K I, Mobayashi M, Hashimoto S I. Metall Mater Trans, 1992; 23A: 3085
[7] Sugimoto K I, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608
[8] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[9] Misra R D K, Zheng H, Wu K M, Karjalainen L P. Mater Sci Eng, 2013; A579: 188
[10] Kang J, Zhou X G, Wang G D. Steel Rolling, 2009; 26(3): 34
[10] (康 健, 周晓光, 王国栋. 轧钢, 2009; 26(3): 34)
[11] Miller R L. Metall Trans, 1972; 3: 905
[12] Niikura M, Morris J W. Metall Trans, 1980; 11: 1531
[13] Luo H W, Shi J, Wang C, Cao W Q, Sun X J, Dong H. Acta Mater, 2011; 59: 4002
[14] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815
[15] Zhou W H, Guo H, Xie Z J, Wang X M, Shang C J. Mater Sci Eng, 2013; A587: 366
[16] Zhou W H, Wang X L, Venkatsurya P K C, Guo H, Shang C J, Misra R D K. Mater Sci Eng, 2014; A607: 569
[17] Xie Z J, Yuan S F, Zhou W H, Yang J R, Guo H, Shang C J. Mater Des, 2014; 59: 195
[18] Takaki S, Fukunaga K, Syarif J, Tsuchiyama T. Metall Trans, 2004; 45: 2251
[19] Sakuma Y, Matsumura O, Takechi H. Metall Trans, 1991; 22A: 489
[20] Thomas G. Metall Trans, 1978; 9A: 447
[21] Chi C Y, Dong J X, Liu W Q, Xie X S. Acta Metall Sin, 2010; 46: 1145
[21] (迟成宇, 董建新, 刘文庆, 谢锡善. 金属学报, 2010; 46: 1145)
[22] Ray A, Dhua S K. Mater Charact, 1996; 37: 1
[23] Zhang Y H, Zhao H J, Kang Y L. Hot Working Tech, 2006; 35(6): 62
[23] (张迎晖, 赵鸿金, 康永林. 热加工工艺, 2006; 35(6): 62)
[24] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[25] Yen H Y, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[26] He B B, Huang M X, Liang Z Y, Ngan A H W, Luo H W, Shi J, Cao W Q, Dong H. Scr Mater, 2013; 69: 216
[27] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H. Mater Sci Eng, 2011; 528A: 8486
[28] Zhou W H, Guo H, Xie Z J, Shang C J. Mater Des, 2014; 59: 195
[1] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[2] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[3] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[4] 董瀚,廉心桐,胡春东,陆恒昌,彭伟,赵洪山,徐德祥. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[10] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[11] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[13] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[14] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[15] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.