Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 537-544    DOI: 10.11900/0412.1961.2014.00566
  论文 本期目录 | 过刊浏览 |
一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*
李小琳,王昭东()
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL
Xiaolin LI,Zhaodong WANG()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. Acta Metall Sin, 2015, 51(5): 537-544.

全文: PDF(5898 KB)   HTML
摘要: 

研究了经一步淬火C配分(Q&P)工艺处理的双马氏体实验钢的微观组织与力学性能, 并与经直接淬火及淬火回火(Q&T)工艺处理的实验钢进行对比, 初步探讨了一步Q&P工艺对材料微观组织和力学性能的影响规律. 结果表明, 显微组织主要由板条马氏体、片状马氏体和板条间薄膜状残余奥氏体组成, 且随着保温时间的延长, 片状马氏体含量先增加后减小, 残余奥氏体含量逐渐增大且趋于稳定. 与传统的直接淬火及Q&T工艺相比, 经一步 Q&P工艺处理后的实验钢具有良好的综合力学性能, 即具备高强度的同时也具备良好的塑性, 其强塑积、抗拉强度和延伸率分别可达21774.2 MPa%, 1442 MPa和15.1%, 且随着保温时间的延长, 抗拉强度逐渐减小, 延伸率逐渐增大且趋于稳定.

关键词 高强钢Q&P工艺马氏体残余奥氏体强塑积    
Abstract

In accordance with the demand for reduced fuel consumption and CO2 emissions in automobiles, and with the increasing high demand for vehicle lightweight and safety, advanced high- strength steels (AHSS) have received more attentions in recent years. The recent trend for the development of AHSS has been concentrated on the complex microstructure with multiphase. Quenching and partitioning (Q&P) steel with carbon-enriched austenite within martensitic matrix as a competitive candidate of AHSS have been developed widely. It has high strength and good ductility depending on the multiphase microstructure. Therefore, the relationship of the mechanical property and the microstructure of the Q&P steels should be studied in detail. In the present work, the microstructure characterization and mechanical properties of the experimental steel treated by one step Q&P process were investigated, as well as the direct quenching and Q&T processes. The results show that the microstructure of the steel treated by one step Q&P process mainly consists of lath martensite, plate martensite and residual austenite films between martensite laths. With a increase in the holding time, the fraction of the plate martensite firstly increases and then reduces, while that of the retained austenite firstly increases and then becomes constant. The combination of strength and elongation of the steel processed by one step Q&P is much better than the one processed by the other two, that is to say, the former one can possess good strength and ductility at the same time. The product of tensile strength and elongation, the tensile strength and the elongation can achieve 21774.2 MPa·%, 1442 MPa and 15.1%, respectively. Along with the holding time increasing, tensile strength decreases but elongation rises and finally be stable.

Key wordshigh strength steel    Q&P process    martensite    retained austenite    product of tensile strength and elongation
收稿日期: 2014-10-15     
基金资助:* 国家自然科学基金项目51034009和51234002资助
作者简介: 李小琳, 女, 1990年生, 博士生
Sample Process Austenization T (t) Quenchant Quenching T (t) Tempering T (t)
No.1 Direct quenching 950 ℃ (3 min) Saturated NaCl solution RT -
No.2 Direct quenching 950 ℃ (3 min) Water RT -
No.3 Direct quenching 950 ℃ (3 min) Air RT -
No.4 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (2 min) -
No.5 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (5 min) -
No.6 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (10 min) -
No.7 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (15 min) -
No.8 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (30 min) -
No.9 Q&T 950 ℃ (3 min) Saturated NaCl solution RT 300 ℃ (60 min)
No.10 Q&T 950 ℃ (3 min) Water RT 300 ℃ (60 min)
No.11 Q&T 950 ℃ (3 min) Air RT 300 ℃ (60 min)
表1  不同试样的热处理工艺参数
图1  不同试样的OM像
图2  试样No.8的膨胀曲线
图3  试样No.1~No.3的TEM像和SAED谱
图4  试样No.6的TEM像和SAED谱
图5  试样No.8的TEM像和SAED谱
图6  不同试样的XRD谱
Sample Rm / MPa δ / % Rmδ / (MPa%)
No.1 1637 10.8 17679.6
No.2 1611 11.2 18043.2
No.3 1429 13.9 19963.1
No.4 1485 14.3 21236.5
No.5 1442 15.1 21774.2
No.6 1369 15.8 21630.2
No.7 1325 16.3 21605.5
No.8 1275 16.8 21420.0
No.9 1498 12.1 18125.8
No.10 1469 12.7 18656.3
No.11 1390 14.0 19460.0
表2  不同试样的力学性能
[1] Senuma T. ISIJ Int, 2001; 41: 520
[2] Hu J, Du L X, Wang J J. Mater Sci Eng, 2012; A554: 79
[3] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[6] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[7] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2008; 40A: 46
[8] Liu H P, Lu X W, Jin X J, Dong H, Shi J. Scr Mater, 2011; 64: 749
[9] Li H Y, Lu X W, Li W J, Jin X J. Metall Mater Trans, 2010; 41A: 1284
[10] De Moor E, Lacroixs S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008; 39A: 2586
[11] Bagliani E P, Santofimia M J, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[12] Wang C Y. PhD Dissertation. Central Iron & Steel Research Institute, Beijing, 2010 (王存宇. 钢铁研究总院博士学位论文, 北京, 2010)
[13] Wang C Y, Shi J, Cao W Q, Hui W J. Acta Metall Sin, 2011; 47: 720 (王存宇, 时 捷, 曹文全, 惠卫军. 金属学报, 2011; 47: 720)
[14] Wang C Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2010; A527: 3442
[15] Santofimia M J, Petrov R H, Zhao L, Sietsma J. Mater Charact, 2014; 92: 91
[16] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[17] Santofimia M J, Speer J G, Clarke A J, Zhao L, Sietsma J. Acta Mater, 2009; 57: 4548
[18] Cui Z Q,Qin Y C. Metallographic and Thermal Treatment. 2nd Ed., Bejing: China Machine Press, 2007: 250, 43 (崔忠圻,覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版业, 2007: 250, 43)
[19] Sun J, Yun H, Wang S Y. Mater Sci Eng, 2014; A596: 89
[20] Yan S, Liu X H, Liu W J. Mater Sci Eng, 2015; A620: 58
[21] Hana J, Bohuslav M, Marin F W, Daniel K. J Alloys Compd, 2014; 615: 163
[22] Li Z, Wu D. ISIJ Int, 2006; 46: 121
[23] Sugimoto K I, Usui N, Kobayashi M, Hashimota S I. ISIJ Int, 1992; 32: 1311
[24] Kung C Y, Rayment J J. Mater Trans, 1982; 13A: 328
[25] Pan J S,Tong J M,Tian M B. Material Science Foundation. Beijing: Tsinghua University Press, 2011: 462 (潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 462)
[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[27] Zhong N, Wang X, Rong Y. J Mater Sci Technol, 2006; 22: 751
[28] Guo K X,Ye H Q,Wu Y K. Application of Electron Diffraction Pattern in Crystallography. Beijing: Science Press, 1983: 309 (郭可信,叶恒强,吴玉琨. 电子衍射图在晶体学中的应用. 北京: 科学出版社, 1983: 309)
[29] Yan S, Liu X H, Liu W J. Acta Metall Sin, 2013; 49: 917 (闫 述, 刘相华, 刘伟杰. 金属学报, 2013; 49: 917)
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[12] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[13] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[14] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[15] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.