Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 333-340    DOI: 10.11900/0412.1961.2014.00552
  本期目录 | 过刊浏览 |
晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响
杨辉1, 夏爽1,2(), 张子龙1, 赵清1, 刘廷光1, 周邦新1,2, 白琴1,2
1 上海大学材料研究所, 上海 200072
2 上海大学微结构重点实验室, 上海 200444
IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL
YANG Hui1, XIA Shuang1,2(), ZHANG Zilong1, ZHAO Qing1, LIU Tingguang1, ZHOU Bangxin1,2, BAI Qin1,2
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Key Laboratory for Microstructure, Shanghai University, Shanghai 200444
引用本文:

杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
Hui YANG, Shuang XIA, Zilong ZHANG, Qing ZHAO, Tingguang LIU, Bangxin ZHOU, Qin BAI. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL[J]. Acta Metall Sin, 2015, 51(3): 333-340.

全文: PDF(7166 KB)   HTML
摘要: 

通过拉伸变形5%及1100 ℃退火30 min的晶界工程(GBE)处理工艺, 将304奥氏体不锈钢低Σ重合位置点阵(CSL)晶界比例提高到75% (Palumbo-Aust标准)以上, 形成大尺寸的“互有Σ3n取向关系晶粒的团簇”显微组织. 采用钨极气体保护焊焊接样品, 对焊接后样品的HAZ区域进行显微组织表征和耐腐蚀性能测试. 结果表明, GBE处理过的304奥氏体不锈钢具有较好的晶界网络稳定性, HAZ区域内仍具有高比例低ΣCSL晶界, 并且晶粒尺寸并未明显变大. 在晶间腐蚀浸泡实验和电化学动电位再活化法(EPR)测试中, GBE处理的样品HAZ敏化区都表现出了更好的耐腐蚀性能, 表明晶界工程可以有效改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能.

关键词 304奥氏体不锈钢晶界工程热影响区晶间腐蚀焊接    
Abstract

The heat-affected zone (HAZ) produced by welding in stainless steel has higher susceptibility to intergranular corrosion, which is attributed to the Cr depletion induced by grain-boundary carbide-precipitation. The grain boundary engineering can be used to control over the grain boundary structure, which has significant influence on the carbide precipitation and the associated Cr depletion and hence on the susceptibility to intergranular corrosion. The grain boundary network in a 304 austenite stainless steel can be controlled by grain boundary engineering (GBE) with 5% tensile deformation and subsequent annealing at 1100 ℃ for 30 min. The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 75%, and the large-size highly-twinned grain-cluster microstructure was formed through the treatment of GBE. Specimens were welded by gas tungsten arc-welding. Then the microstructure and the corrosion resistance of HAZ were characterized. The result showed that the high proportion of low ΣCSL boundaries and the optimum grain boundary character distribution were stable in the HAZ of the grain boundary engineered stainless steel, and the grain size was nearly the same. The weld-decay region of GBE samples performed better intergranular corrosion resistance during the intergranular corrosion immersion experiment and electrochemical potentiokinetic reactivation (EPR) test. The reported results indicated that the grain boundary engineering can effectively improve the intergranular corrosion resistance of the heat-affected zone in 304 austenitic stainless steel.

Key words304 austenite stainless steel    grain boundary engineering    heat-affected zone    intergranular corrosion    welding
    
ZTFLH:  TG174.1  
基金资助:* 国家重点基础研究发展计划项目2011CB610502和上海市科委重点支撑项目13520500500资助
作者简介: null

杨辉, 男, 1989年生, 硕士

Specimen Cold 1100 ℃ Tensile 1100 ℃
rolling annealing strain annealing
% time / min % time / min
A 50 60 - -
B 50 20 5 30
表1  样品A和B的处理工艺
图1  样品氩弧焊焊接方式示意图
图2  样品A和B不同类型晶界的OIM图
Specimen Length fraction of grain boundary / % Average grain Average grain-cluster
Σ3 Σ9+Σ27 Overall low Σ size / μm size / μm
A 44.0 1.0 45.0 24.3 51.1
B 66.5 9.1 75.6 28.1 124.4
表2  样品A和B的晶界特征分布统计及晶粒尺寸
图3  焊接样品A和B蚀刻后的宏观显微组织
图4  焊接样品A和B各区域显微组织中不同晶界类型分布OIM图
图5  焊接样品A和B各区域显微组织中低ΣCSL晶界比例及晶粒尺寸
图6  腐蚀48 h后焊接样品A和B表面宏观形貌和HAZ敏化区SEM像
图7  样品A-W和B-W的HAZ敏化区腐蚀失重曲线
[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195
[1] (杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)
[2] Trillo E A, Murr L E. Acta Mater, 1998; 47: 235
[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49
[4] Kokawa H, Shimada M, Michiuchi M, Wang Z J, Sato Y S. Acta Mater, 2007; 55: 5401
[5] Zhou Z F. Welding Metallurgy. Beijing: Mechanical Industry Press, 2001: 68
[5] (周振丰. 焊接冶金学. 北京: 机械工业出版社, 2001: 68)
[6] Li Y J. Welding of Structural Alloy Steel and Stainless Steel. Beijing: Chemical Industry Press, 2012: 218
[6] (李亚江. 合金结构钢及不锈钢的焊接. 北京: 化学工业出版社, 2012: 218)
[7] Watanable T. Res Mech, 1984; 11: 47
[8] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501
[9] Randle V. Acta Mater, 2004; 52: 4067
[10] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79
[11] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101
[12] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019
[13] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[14] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016
[15] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin, 2006; 42: 129
[15] (夏 爽, 周邦新, 陈文觉, 王卫国. 金属学报, 2006; 42: 129)
[16] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715
[16] (王卫国, 周邦新, 冯 柳, 张 欣, 夏 爽. 金属学报, 2006; 42: 715)
[17] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939
[17] (胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[18] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J, Wang N. Corros Sci, 2011; 53: 1880
[19] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[20] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331
[21] Brandon D G. Acta Mater, 1966; 14: 1479
[22] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998; 38: 1685
[23] de Lima-Neto P, Farias J P, Abreu H F G. Corros Sci, 2008; 50: 1149
[24] Arutunow A, Darowicki K. Electrochim Acta, 2009; 54: 1034
[25] Aydodu G H, Aydinol M K. Corros Sci, 2006; 48: 3565
[26] Yu X, Chen S, Liu Y, Ren F. Corros Sci, 2010; 52: 1939
[27] Leiva-García R, Muñoz-Portero M J, García-Antón J. Corros Sci, 2009; 51: 2080
[28] Bi H Y, Kokawa H, Wang Z J. Scr Mater, 2003; 49: 21
[29] Li H, Xia S, Zhou B X, Chen W J, Hu C L. J Nucl Mater, 2010; 399: 108
[1] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[4] 陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
[5] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[9] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[10] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[11] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[13] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[14] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[15] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.