Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 400-406    DOI: 10.11900/0412.1961.2014.00546
  本期目录 | 过刊浏览 |
基于固有耗散的FV520B钢高周疲劳性能研究
郭强1(), 郭杏林1, 樊俊铃2, 吴承伟1
1 大连理工大学工业装备结构分析国家重点实验室, 大连 116024
2 中国飞机强度研究所, 西安 710065
RESEARCH ON HIGH-CYCLE FATIGUE BEHAVIOR OF FV520B STEEL BASED ON INTRINSIC DISSIPATION
GUO Qiang1(), GUO Xinglin1, FAN Junling2, WU Chengwei1
1 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,Dalian 116024
2 Aircraft Strength Research Institute, Xi'an 710065
引用本文:

郭强, 郭杏林, 樊俊铃, 吴承伟. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 400-406.
Qiang GUO, Xinglin GUO, Junling FAN, Chengwei WU. RESEARCH ON HIGH-CYCLE FATIGUE BEHAVIOR OF FV520B STEEL BASED ON INTRINSIC DISSIPATION[J]. Acta Metall Sin, 2015, 51(4): 400-406.

全文: PDF(873 KB)   HTML
摘要: 

基于固有耗散理论和计算模型, 对FV520B钢的高周疲劳性能进行了较为系统的实验研究. 结果表明, 随着施加的交变应力幅的增大, FV520B钢的固有耗散也不断增大. 其变化规律的拐点对应于固有耗散产生机制的转变, 从单纯地由材料微结构的可逆运动(位错线在强钉扎点之间的摆动)引起, 到由材料微结构的可逆运动和不可逆运动(永久滑移的产生、强钉扎点的脱钉以及位错的增殖)共同引起. 并且, 固有耗散拐点的应力幅值就是导致材料疲劳损伤累积的临界应力幅值, 即疲劳极限. 另外, 实验还表明, FV520B钢在等幅交变应力下具有相对稳定的损伤演化速率, 且损伤演化速率由应力幅值决定, 与加载次序无关; 每一周加载造成的疲劳损伤也不受加载频率的影响. 当FV520B钢在疲劳过程中累积的与微结构不可逆演化相关的固有耗散部分达到一个临界值时, 材料即发生疲劳断裂, 且这个临界值是一个与加载历史无关的材料常数.

关键词 FV520B钢固有耗散高周疲劳微结构运动    
Abstract

Systemic experimental research was carried out on high-cycle fatigue behavior of FV520B steel based on the theory and calculation model of intrinsic dissipation. The experiment results show that the intrinsic dissipation of FV520B steel increases with the increase of the applied stress amplitude. Generally, the inflection point of intrinsic dissipation corresponds to the transition of the generation mechanism of intrinsic dissipation: from the reversible motion of the microstructure (the swing of dislocation lines between strong pinning points) to the combined effects of the reversible and irreversible motion of the microstructure (the generation of permanent slip, the unpinning from strong points and the multiplication of dislocation). And the stress amplitude corresponding to the inflection point is just the critical stress value inducing fatigue damage accumulation. Moreover, the results also indicate that FV520B steel subjected to constant stress amplitude keeps a relatively steady rate related to the applied stress amplitude and independent of the loading sequences. Additionally, the loading frequency has no effect on the fatigue damage per loading cycle. Fatigue failure will occur once the amount of the intrinsic dissipation, due to the irreversible motion of the microstructure, accumulates to a threshold value. And the energy threshold is found to be independent of the loading history.

Key wordsFV520B steel    intrinsic dissipation    high-cycle fatigue    microstructure motion
    
ZTFLH:  TG113.2  
基金资助:*国家自然科学基金项目11072045和国家重点基础研究发展计划项目2011CB706504资助
作者简介: null

郭 强, 男, 1988年生, 博士生

图1  试件几何尺寸示意图
图2  加载过程图谱
图3  固有耗散随应力幅的变化
图4  微结构不可逆演化引起的固有耗散
图5  固有耗散在整个疲劳寿命中的演化
图6  FV520B钢的S-N曲线
图7  固有耗散随加载序列的变化
图8  固有耗散随加载频率的变化
[1] Zhou Q Q, Zhai Y C. Acta Metall Sin, 2009; 45: 1249
[1] (周倩青, 翟玉春. 金属学报, 2009; 45: 1249)
[2] Niu J, Dong J M, Xue J. Chin J Mech Eng, 2007; 43(12): 78
[2] (牛 靖, 董俊明, 薛 锦. 机械工程学报, 2007; 43(12): 78)
[3] Niu J, Dong J M, Xue J, Zhang M. Trans China Weld Inst, 2006; 27: 101
[3] (牛 靖, 董俊明, 薛 锦, 张 敏. 焊接学报, 2006; 27: 101)
[4] Fan J L, Guo X L, Wu C W, Deng D W. Chin J Mater Res, 2012; 33: 76
[4] (樊俊铃, 郭杏林, 吴承伟, 邓德伟. 材料研究学报, 2012; 33: 76)
[5] Fan J L, Guo X L, Wu C W, Zhao Y G. Mater Sci Eng, 2011; A528: 8417
[6] Fan J L, Guo X L, Wu C W. Mater Eng, 2013; (7): 1
[6] (樊俊铃, 郭杏林, 吴承伟. 材料工程, 2013; (7): 1)
[7] Risitano A, Risitano G. Int J Fatigue, 2013; 48: 214
[8] Fargione G, Geraci A, La Rosa G, Risitano A. Int J Fatigue, 2002; 24: 11
[9] Boulanger T, Chrysochoos A, Mabru C, Galtier A. Int J Fatigue, 2004; 26: 221
[10] Berthel B, Chrysochoos A, Wattrisse B, Galtier A. Exp Mech, 2007; 48: 79
[11] Giancane S, Chrysochoos A, Dattoma V, Wattrisse B. Theor Appl Fract Mec, 2009; 52: 117
[12] Connesson N, Maquin F, Pierron F. Acta Mater, 2011; 59: 4100
[13] Connesson N, Maquin F, Pierron F. Exp Mech, 2010; 51: 23
[14] Meneghetti G, Ricotta M. Eng Fract Mech, 2012; 81: 2
[15] Meneghetti G, Quaresimin M. Composites, 2011; 42B: 217
[16] Meneghetti G. Int J Fatigue, 2007; 29: 81
[17] Maquin F, Pierron F. Mech Mater, 2009; 41: 928
[18] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1992; 28: 163
[18] (童小燕, 王德俊, 徐 灏. 金属学报, 1992; 28: 163)
[19] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1991; 27: 149
[19] (童小燕, 王德俊, 徐 灏. 金属学报, 1991; 27: 149)
[20] Yao L J, Li B, Tong X Y. J Northwestern Polytechnical Univ, 2008; 26: 225
[20] (姚磊江, 李 斌, 童小燕. 西北工业大学学报, 2008; 26: 225)
[21] Zeng W, Han X, Ding H, Liu H. J Mech Strength, 2008; 30: 658
[21] (曾 伟, 韩 旭,丁 桦, 刘 浩. 机械强度, 2008; 30: 658)
[22] Li Y, Han X, Liu J, Jiang C. Acta Mechanica Sin, 2013; 45: 367
[22] (李 源, 韩 旭, 刘 杰, 姜 潮. 力学学报, 2013; 45: 367)
[23] Zhang H X, Wu G H, Yan Z F, Guo S F, Chen P D, Wang W X. Mater Des, 2014; 55: 785
[24] Liu X Q, Zhang H Q, Yan Z F, Wang W X, Zhou Y G, Zhang Q M. Theor Appl Fract Mech, 2013; 67: 46
[25] Guo Q, Guo X L, Fan J L, Hou P J, Wu C W. Acta Mechanica Sin, 2014; 46: 931
[25] (郭 强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 力学学报, 2014; 46: 931)
[26] Fan J L, Guo X L, Wu C W. Int J Fatigue, 2012; 44: 1
[27] Fan J L, Guo X L, Zhao Y G, Wu C W. Mater Eng, 2011; (12): 29
[27] (樊俊铃, 郭杏林, 赵延广, 吴承伟. 材料工程, 2011; (12): 29)
[28] Lemaitre J,Chaboche J L. Mechanics of Solid Materials. Cambridge: University Press, 1990: 37
[29] Wang H G. An Introduction to Thermoelasticity. Beijing: Tsinghua University Press, 1989: 38
[29] (王洪纲. 热弹性力学概论. 北京: 清华大学出版社, 1989: 38)
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[3] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[4] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[5] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[6] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[7] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[8] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[9] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[10] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[11] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[12] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[13] 韩国明 张振兴 李金国 金涛 孙晓峰 胡壮麒. DD98M镍基单晶高温合金900℃高周疲劳行为[J]. 金属学报, 2012, 48(2): 170-175.
[14] 刘恩泽 郑志 佟健 宁礼奎 管秀荣. DZ468合金高周疲劳性能研究[J]. 金属学报, 2010, 46(6): 708-714.
[15] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.