Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1297-1305    DOI: 10.11900/0412.1961.2014.00541
  本期目录 | 过刊浏览 |
充氢超高强度钢拉伸变形的原位中子衍射研究*
徐平光1(),殷匠2,张书彦3
2 江苏亚星锚链股份有限公司, 靖江 214533
3 Rutherford Appleton Laboratory, Didcot OX11 0QX United Kingdom
TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION
Pingguang XU1(),Jiang YIN2,Shuyan ZHANG3
1 Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 Japan
2 Jiangsu Asian Star Anchor Chain Co. Ltd., Jingjiang 214533
3 Rutherford Appleton Laboratory, Didcot OX11 0QX United Kingdom
引用本文:

徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
Pingguang XU, Jiang YIN, Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. Acta Metall Sin, 2015, 51(11): 1297-1305.

全文: PDF(1200 KB)   HTML
摘要: 

利用飞行时间法中子衍射对比研究了充氢与未充氢1250 MPa超高强度钢的拉伸变形行为与轴向晶格变形特征, 并观察了断口区组织形貌与晶粒取向特征. 在无加载条件下, 充氢试样的轴向(110)与(200)面间距分别大于和小于未充氢试样的对应面间距, 显示出四面体间隙中H原子的进入使轴向(110)面间距有所增加, 同时内部应力的平衡作用使轴向(200)面间距有所减少. 未充氢试样达到1250 MPa抗拉强度发生颈缩塑性断裂, 而含有8.0×10-6可扩散氢的试样在分步加载至500 MPa时发生脆性断裂. 中子衍射分析表明, 未充氢试样在拉应力加载至500 MPa时均基本符合线弹性变形, 但至700 MPa时, 轴向{200}晶粒比其余取向晶粒优先显示非线弹性变形, 至800 MPa时轴向{110}晶粒也出现非线弹性变形, 轴向{200}晶粒优先产生微屈服现象, 而轴向{211}晶粒仍然处于线弹性阶段; 充氢试样在拉伸至300 MPa时, 轴向{110}晶粒出现非线弹性变形, 至400 MPa时轴向{200}晶粒也出现非线弹性变形, 轴向{110}晶粒优先产生微屈服现象, 轴向{211}晶粒仍处于线弹性阶段. 断口剖面观察显示未充氢试样内形成明显的轴向<110>拉伸纤维织构, 而氢脆试样内除了明显的晶界裂纹萌生, 还有晶内裂纹扩展与局部晶体转动特征. 基于不同取向晶粒的微屈服概念, 解释了充氢导致轴向{110}晶粒优先微屈服而不是轴向{200}晶粒优先微屈服, 同时以氢伴随微区塑性变形的方式发生脆性断裂.

关键词 脆性断裂充氢微区塑性变形高强度低合金钢中子衍射晶格应变    
Abstract

The tensile deformation behavior and the axial lattice strain response of 1250 MPa ultra-high strength steels with and without hydrogen charging were comparably investigated using time-of-flight neutron diffraction together with the fracture morphology and microstructure observation. Before tensile loading, the axial (110) lattice plane spacing of hydrogen charged specimen was found larger than that of non-charged specimen while the axial (200) lattice plane spacing of the former was smaller than that of the latter, suggesting that the hydrogen atoms occupied the tetrahedral site promoted the increment of axial (110) lattice plane spacing while the balanced internal stress resulted in the proper decrement of axial (200) lattice plane spacing. The necking and ductile fracture after approaching the 1250 MPa tensile strength occurred in the non-charged specimen, while the brittle fracture occurred in the 8.0×10-6 hydrogen charged specimen at 500 MPa holding during step-by-step loading. The neutron diffraction analysis showed that in the non-charged specimen, the linear elastic deformation was kept up to 500 MPa loading, the nonlinear elastic deformation was observed preferably on the axial (200) reflection at 700 MPa, and then on the axial (110) reflection at 800 MPa; the axial {200} (i.e. <200>//TD, TD—tensile direction) grain orientation-dependent microyielding was observed preferably at 800 MPa while the (211) reflection was still under linear elastic deformation. Comparably, in the hydrogen charged specimen, the nonlinear elastic deformation was observed preferably on the axial (110) reflection at 300 MPa, and then on the axial (200) reflection at 400 MPa; the axial {110} grain orientation-dependent microyielding was observed preferably at 400 MPa while the axial (211) reflection was still under linear elastic deformation. The longitudinally sectioned microstructure observation under fracture surface confirmed the typical <110>-oriented tensile fiber texture in the non-charged specimen while the intergranular cracks along grain boundaries, quasi-cleavage/cleavage cracks and local crystal rotation in various grains of the hydrogen charged specimen. A concept about crystallographic orientation dependent microyielding was employed here to explain the above results, i.e. the hydrogen charging promoted the axial {110} grain orientation-dependent microyielding rather than axial {200} grain orientation-dependent microyielding, and the diffusible hydrogen embrittled the matrix microstructure, accompanying with local plastic deformation.

Key wordsbrittle fracture    hydrogen charging    local plastic deformation    high strength low alloy steel    neutron diffraction    lattice strain
    
基金资助:*国家重大科学仪器设备开发专项资助项目2011YQ030112
图1  充氢镀Zn高强度实验钢在5~7 ℃放置120 h后的可扩散氢的脱氢分析曲线
图2  未充氢试样[25]和充氢试样的分步加载拉伸变形过程
图3  未充氢试样(110)与(200)衍射峰在拉伸变形过程中的波峰偏移[25]
图4  拉伸变形过程中未充氢试样的宏观应变与&lt;hkl&gt;//TD取向晶粒的晶格应变的变化[25]
图5  充氢试样(110)与(200)衍射峰在拉伸变形过程中的波峰偏移
图6  拉伸变形过程中充氢试样的宏观应变与&lt;hkl&gt;//TD取向晶粒的晶格应变的变化
Specimen Lattice parameter (110) interplanar (200) interplanar (211) interplanar
spacing spacing spacing
Non-charged, No.1 2.86968±0.00003 2.02929±0.00003 1.43502±0.00006 1.17151±0.00003
Hydrogen charged, No.2 2.86967±0.00002 2.02932±0.00002 1.43488±0.00004 1.17151±0.00002
Change in No.2 and No.1 -0.00001 0.00003 -0.00014 0.00000
Hydrogen charged, No.3 2.86971±0.00003 2.02936±0.00002 1.43490±0.00005 1.17154±0.00002
Change in No.3 and No.1 0.00003 0.00007 -0.00012 0.00003
表1  未加载状态拉伸试样的全谱拟合点阵常数与单峰拟合分析晶面间距
图7  未充氢试样与充氢试样的断口形貌
图8  原位拉伸试样的纵剖面组织取向特征及裂纹萌生与二次裂纹扩展行为
[1] Matsuyama S. Delayed Fracture.Tokyo: The Nikkan Kogyo Shimbun, Ltd., 1989: 25 (松山晋作. 遅れ破壊. 東京: 日刊工業新聞社, 1989: 25)
[2] Long Q W. Acta Metall Sin, 1980; 16: 109 (龙期威. 金属学报, 1980; 16: 109)
[3] Zhang T Y, Chu W Y, Xiao J M. Sci China, 1986; 16A: 316 (张统一, 褚武扬, 肖纪美. 中国科学, 1986; 16A: 316)
[4] Jiang S R, Quan H S. Acta Phys Sin, 1992; 41: 48 (蒋生蕊, 权宏顺. 物理学报, 1992; 41: 48)
[5] Liang Y, Sofronis P, Aravas N. Acta Mater, 2003; 51: 2717
[6] Sanchez J, Fullea J, Andrade C, de Andres P L. Phys Rev, 2008; 78B: 014113
[7] Castedo A, Sanchez J, Fullea J, Andrade M C, de Andres P L. Phys Rev, 2011; 84B: 094101
[8] Anderson T L. Fracture Mechanics: Fundamentals and Applications. 3rd Ed., Tokyo: Morikita. Co, 2011: 525
[9] Zhang L X, Li L G. Acta Metall Sin, 1982; 18: 402 (张立新, 李黎光. 金属学报, 1982; 18: 402)
[10] Wang M Q, Dong H, Hui W J, Shi J, Akiyama E, Tsuzaki K. Trans Met Heat Treat, 2006; 27(4): 57 (王毛球, 董 瀚, 惠卫军, 时 捷, 秋山英二, 津崎兼彰. 材料热处理学报, 2006; 27(4): 57)
[11] Wang M Q, Akiyama E, Tsuzaki K. Mater Sci Eng, 2005; A398: 37
[12] Maier H J, Kaesche H. Mater Sci Eng, 1989; A117: L11
[13] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G. Mater Sci Eng, 2006; A527: 7252
[14] Akiyama E. ISIJ Int, 2012; 52: 307
[15] Wurushihara W, Yuse F, Nakayama T, Namimura Y, Ibaraki N. Kobe Steel Eng Rep, 2002; 52(3): 57 (漆原亘, 湯瀬文雄, 中山武典, 並村裕一, 茨城信彦. 神戸製鋼技報, 2002; 52(3): 57)
[16] Hagihara Y, Shobu T, Hisamori N, Suzuki H, Takai K, Hirai K. Tetsu Hagané, 2011; 97: 143 (萩原行人, 菖蒲敬人, 久森紀之, 鈴木啓史, 高井健一, 平井敬二. 鉄と鋼, 2011; 97: 143)
[17] Nagumo M. ISIJ Int, 2001; 43: 590
[18] Baird J K, Schwartz E M. Z Phys Chemie Bd, 1999; 211: 47
[19] Ligenza S, Paluchowska B, Konwicki M. Phys Stat Solid, 1988; 106A: K71
[20] Yuan X Z, Wu E D, Guo X M, Du X M, Sun K, Chen D F, Chen B, Sun G A. Atomic Energy Sci Technol, 2007; 41: 517 (苑学众, 吴尔冬, 郭秀梅, 杜晓明, 孙 凯, 陈东风, 陈 波, 孙光爱. 原子能科学技术, 2007; 41: 517)
[21] Nash G L, Choo H, Nash P, Daemn L L, Bourke M A M. Adv X-ray Anal, 2003; 46: 238
[22] Hoelzel M, Danilkin S A, Ehrenberg H, Toebbens D M, Udovic T J, Fuess H, Wipf H. Mater Sci Eng, 2004; A384: 255
[23] Castellote M, Fullea J, de Viedma P G, Andrade C, Alonso C, Llorente I, Turrillas X, Campo J, Schweitzer J S, Spillane T, Livingston R A, Rolfs C, Becker H W. Nucl Inst Methods Phys Res, 2007; 259B: 975
[24] Ishikawa N, Sueyoshi H, Suzuki H, Akita K. Quart J Jpn Weld Soc, 2011; 29: 218 (石川信行, 末吉仁, 鈴木裕士, 秋田貢一.溶接学会論文集,2011; 29: 218)
[25] Yin J, Xu P G, Zhang S Y. Heat Treat, 2013; 28(6): 5 (殷 匠, 徐平光, 张书彦. 热处理, 2013; 28(6): 5)
[26] Abel A, Nuir H. Acta Metall, 1973; 21: 99
[27] Suzuki N, Ishii N, Miyagawa T. Tetsu Hagané, 1996; 82: 170 (鈴木信一, 石井信幸, 宮川敏夫. 鉄と鋼, 1996; 82: 170)
[28] Lorentzen T. In: Fitzpatrick M E, Lodini A eds., Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. London: Taylor & Francis, 2003: 114
[29] Clausen B, Lorentzen T, Bourke M A M, Daymond M R. Mater Sci Eng, 1999; A259: 17
[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[3] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[7] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[9] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
[10] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[11] 张孟,刘丹敏,刘翠秀,黄清镇,王少博,张虎,岳明. Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与磁性能关系的研究[J]. 金属学报, 2013, 49(7): 783-788.
[12] 蒋文春 Woo Wanchuck 王炳英 涂善东. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529.
[13] 吴尔冬 郭秀梅 孙凯. Laves相合金氘化物Ti0.68Zr0.32MnCrD3.0中氘占位的中子衍射研究[J]. 金属学报, 2009, 45(5): 513-518.
[14] 徐平光; 友田阳 . 基于原位中子衍射表征技术的进展[J]. 金属学报, 2006, 42(7): 681-688 .
[15] 甘阳; 周本濂 . FeMoSiB纳米晶薄带的裂纹扩展阻力和结构的关系[J]. 金属学报, 2001, 37(4): 391-394 .