Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 873-882    DOI: 10.11900/0412.1961.2014.00525
  本期目录 | 过刊浏览 | 高级检索 |
Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*
马文婧,柯常波,周敏波,梁水保,张新平()
PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM
Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG()
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
下载:  HTML  PDF(8639KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用二元合金晶体相场模型模拟研究了Sn/Cu互连体系Cu/Cu3Sn界面及金属间化合物层中Kirkendall空洞形成和形貌演化及长大过程, 对Kirkendall空洞生长的微观机制进行了剖析, 同时还模拟和分析了界面Cu3Sn层厚度和杂质含量对Kirkendall空洞形貌和生长动力学的影响. 研究表明, Kirkendall空洞的生长过程由4个阶段组成: Cu/Cu3Sn界面形成大量原子错配区, 原子错配区迅速成长为空洞, 空洞的长大及随后的空洞合并生长. Kirkendall空洞优先在Cu/Cu3Sn界面处形核, 其尺寸随时效时间的延长而增大, 并在时效后期空洞的生长伴随有空洞的合并. Cu3Sn层厚度增加和杂质含量增多均使得Kirkendall空洞数量和生长指数增加以及尺寸增大, 并且2种情况下空洞数量随时间的变化均呈现先增后减的规律.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  Kirkendall空洞  金属间化合物  生长动力学  组织演化  晶体相场法    
Abstract: 

With the development of electronic products towards further miniaturization, multifunction and high-reliability, the packaging density has been increasing and the dimension of solder joints has been scaling down. In electronic packaging, during the soldering process of Sn/Cu system, an intermetallic compound (IMC) layer is formed at the interface between the molten solder and pad (substrate), the interfacial microstructure plays an important role in the reliability of solder interconnects. Generally, during the reflow soldering and subsequent aging process, a large number of Kirkendall voids may form at the Cu/Cu3Sn interface and in the Cu3Sn layer. The existence of Kirkendall voids may increase the potential for brittle interfacial fracture of solder interconnects and reduce the thermal conductivity. Thus, characterization of formation and growth of Kirkendall voids is very important for the evaluation of performance and reliability of solder interconnects. In this work, the formation and growth of Kirkendall voids at the Cu/Cu3Sn interface and in the Cu3Sn layer of Sn/Cu solder system have been investigated by means of phase field crystal modeling. The growth mechanism of Kirkendall voids was analyzed. The effects of thickness of Cu3Sn layer and impurity particles in the Cu3Sn layer on the growth of Kirkendall voids were discussed. Phase field simulation results show that the growth of Kirkendall voids exhibits four stages during the thermal aging, including the formation of atomic mismatch areas at the Cu/Cu3Sn interface, the rapid growth of the atomic mismatch areas leading to the formation of Kirkendall voids, the growth of Kirkendall voids and the subsequent coalescence of Kirkendall voids. Kirkendall voids nucleate preferentially at the Cu/Cu3Sn interface and their sizes increase with the aging time, and the coalescence of the voids can be observed obviously in the later stage of thermal aging. It has also been shown that the increase of the Cu3Sn layer thickness and the amount of impurity particles lead to an increase in both number and size of Kirkendall voids, as well as an increased growth exponent; and the number of Kirkendall voids increases initially and then decreases with the aging time.

Key words:  Kirkendall voids    intermetallic compound    growth kinetics    morphological evolution    phase-field crystal method
          接受日期:  2015-02-05           发布日期:  2015-05-27      期的出版日期:  2015-07-11
基金资助: * 国家自然科学基金项目51275178 和51205135及高校博士点基金项目20110172110003 和 20130172120055资助
引用本文:    
马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG. PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM. Acta Metall, 2015, 51(7): 873-882.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00525  或          http://www.ams.org.cn/CN/Y2015/V51/I7/873
图1  模拟计算采用的二维区域示意图
Symbol Value Symbol Value
B 0 l 0.7 t 1 0.6
B 2 l -1.8 v 1.0
B x 1 K 4.0
n ? l -0.2571 w 1.0
ψ C u 0.2 u 4.0
ψ S n -0.2 n ? s -0.1503
表1  Sn/Cu互连体系模拟所采用的材料属性参数[22]
图2  Cu/Cu3Sn界面和Cu3Sn层Kirkendall空洞的模拟结果和组织形貌
图3  Cu/Cu3Sn界面和Cu3Sn层Kirkendall空洞在不同原子迁移率时的组织形貌
图4  不同Cu3Sn层厚度下Cu/Cu3Sn界面Kirkendall空洞组织形貌
图5  不同Cu3Sn层厚度时Cu/Cu3Sn界面Kirkendall空洞数量随时间的变化关系
图6  不同Cu3Sn层厚度时Cu/Cu3Sn 界面Kirkendall空洞尺寸随时间变化关系
Thickness ratio Kt nY RY2
Cu3Sn∶Cu=1∶1 1.679 1.126 0.983
Cu3Sn∶Cu=9∶10 2.689 0.535 0.980
Cu3Sn∶Cu=4∶5 6.152 0.312 0.994
表2  不同Cu3Sn层厚度情况下Cu/Cu3Sn 界面Kirkendall空洞尺寸随时间变化指数拟合结果
图7  模拟计算采用的二维区域示意图
图8  不同杂质含量时Cu/Cu3Sn界面Kirkendall空洞的组织形貌
图9  不同杂质含量情况下Kirkendall空洞数量随时效时间的变化关系
图10  不同杂质含量情况下Kirkendall空洞尺寸与时效时间的变化关系
Impurity concentration Kt nY RY2
12.98% 0.0270 0.385 0.989
22.26% 0.2050 0.556 0.990
35.56% 0.5362 0.899 0.992
表3  不同杂质含量下Kirkendall空洞尺寸随时间变化的指数拟合结果
[1] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[2] Ke C B, Zhou M B, Zhang X P. Acta Metall Sin, 2014; 50: 294 (柯常波, 周敏波, 张新平. 金属学报, 2014; 50: 294)
[3] Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 49: 341 (周敏波, 马 骁, 张新平. 金属学报, 2013: 49: 341)
[4] Frear D R. JOM, 1996; 48: 49
[5] Shang J K, Yao D. J Electron Packag, 1996; 118: 170
[6] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[7] Liang S B,Ke C B,Ma W J,Zhou M B,Zhang X P. In: Bi K Y ed., Proceedings of the 15th International Conference on Electronic Packaging Technology, Piscataway, NJ: IEEE Press, 2014: 641
[8] Besser P R, Madden M C, Flinn P A. J Appl Phys, 1992; 72: 3792
[9] Ahat S, Sheng M, Luo L. J Electron Mater, 2001; 30: 1317
[10] Lin X Q, Luo L. J Electron Mater, 2008; 37: 307
[11] Zeng K J, Stierman R, Chiu T C, Edwards D. J Appl Phys, 2005; 97: 024508-1
[12] Wang Y W, Lin Y W, Kao C R. J Alloys Compd, 2010; 493: 233
[13] Liu Y, Wang J, Yin L, Kondos P, Parks C, Borgesen P, Henderson D W, Cotts E J, Dimitrov N. J Appl Electrochem, 2008; 38: 1695
[14] Wafula F, Liu Y, Yin L, Bliznakov S, Borgesen P. J Electrochem Soc, 2010; 157: 111
[15] Wafula F, Liu Y, Yin L, Borgesen P. J Appl Electrochem, 2011; 41: 469
[16] Yin L, Borgesen P. J Mater Res, 2011; 26: 455
[17] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. Z Kristallogr, 2005; 220: 567
[18] Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[19] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[20] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[21] Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007; 75B: 064107-1
[22] Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602-1
[23] Elder K R, Thornton K, Hoyt J J. Philos Mag, 2011; 91: 151
[24] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[25] Mellenthin J, Karma A, Plapp M. Phys Rev, 2008; 78B: 184110
[26] Liu C Y, Ke L, Chuang Y C, Wang S J. J Appl Phys, 2006; 100: 083702
[27] Lee C H, Park C O. Jpn J Appl Phys, 2003; 42: 4484
[28] Kim J Y, Yu J. Appl Phys Lett, 2008; 92: 092109-1
[29] Weinberg K, B?hme T, Müller W H. Comput Mater Sci, 2009; 45: 827
[30] Yu J, Kim J Y. Acta Mater, 2008; 56: 5514
[31] Kim B J,Lim G T,Kim J,Lee K,Park Y B,Joo Y C. In: Wipiejewski T ed., Proceedings of the 58th Electronic Components and Technology Conference, Piscataway, NJ: IEEE Press, 2008: 336
[32] Christian J W. The Theory of Transformations in Metals and Alloys. London: Pergamon Press Oxford, 1965: 471
[1] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[2] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[3] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[4] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[5] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[6] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[7] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[8] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[9] 刘桐,骆良顺,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*II. Al-53%Y包晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 866-874.
[10] 刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
[11] 潘峰,崔丽,钱伟,贺定勇,魏世忠. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能*[J]. 金属学报, 2016, 52(11): 1388-1394.
[12] 陈满骄,黄健康,何翠翠,石玗,樊丁. Al/镀锌钢板焊接界面区Fe-Al-Zn金属间化合物形成的热力学分析*[J]. 金属学报, 2016, 52(1): 113-119.
[13] 武慧东,张弛,柳文波,杨志刚. 考虑位错相互作用的混合控制模型下先共析铁素体生长动力学模拟[J]. 金属学报, 2015, 51(9): 1136-1144.
[14] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[15] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed