Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 364-370    DOI: 10.11900/0412.1961.2014.00522
  本期目录 | 过刊浏览 |
Zn-Al钎料成分对Cu/Zn-Al/Al钎焊接头界面结构及性能的影响
羊浩1, 黄继华1(), 陈树海1, 赵兴科1, 王奇2, 李德华2
1 北京科技大学材料科学与工程学院, 北京 100083
2 珠海格力电器股份有限公司, 珠海 519070
INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT
YANG Hao1, HUANG Jihua1(), CHEN Shuhai1, ZHAO Xingke1, WANG Qi2, LI Dehua2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Gree Electric Appliances, Inc. of Zhuhai, Zhuhai 519070
引用本文:

羊浩, 黄继华, 陈树海, 赵兴科, 王奇, 李德华. Zn-Al钎料成分对Cu/Zn-Al/Al钎焊接头界面结构及性能的影响[J]. 金属学报, 2015, 51(3): 364-370.
Hao YANG, Jihua HUANG, Shuhai CHEN, Xingke ZHAO, Qi WANG, Dehua LI. INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT[J]. Acta Metall Sin, 2015, 51(3): 364-370.

全文: PDF(4687 KB)   HTML
摘要: 

分别采用Zn-15Al, Zn-22Al, Zn-28Al, Zn-37Al和Zn-45Al钎料钎焊获得Cu/Al接头. 利用SEM, EDS和XRD研究了Zn-Al钎料成分对Cu/Al接头中Cu母材/钎缝界面结构的影响, 并系统阐述了Zn-Al钎料成分-接头界面结构-接头抗剪切强度之间的关系. 研究发现, Cu/Zn-15Al/Al接头中Cu母材/钎缝界面结构为Cu/Al4.2Cu3.2Zn0.7, 且Al4.2Cu3.2Zn0.7界面层较薄, 其厚度为2~3 μm, 接头具有较高的抗剪切强度, 达66.3 MPa. 随着钎料中Al含量的提高, 在Cu/Zn-22Al/Al接头界面处Al4.2Cu3.2Zn0.7界面层的厚度逐渐增大, 甚至在Cu/Zn-28Al/Al接头的Al4.2Cu3.2Zn0.7界面层附近出现少量的CuAl2, 接头的抗剪切强度逐渐降低. 当采用Al含量较高的Zn-37Al钎料钎焊Cu/Al接头时, Cu母材/钎缝界面结构转变为Cu/Al4.2Cu3.2Zn0.7/CuAl2; 脆性CuAl2层的出现, 使接头抗剪切强度大幅下降, 为34.5 MPa. 当采用Al含量最高的Zn-45Al钎料钎焊Cu/Al接头时, Cu母材/钎缝界面结构转变为Cu/CuAl2, 接头抗剪切强度最低, 为31.6 MPa.

关键词 Cu/Al接头钎焊界面结构金属间化合物抗剪切强度    
Abstract

The Cu/Al dissimilar metal joint is a compound structure that can efficiently decrease manufacturing costs, reduce product weight, and integrate the advantages of both metals. For the excellent comprehensive properties, the Cu/Al dissimilar metal joint has broad application prospects in air conditioners, refrigerators, cables, electronic components, solar collectors, et al. Brazing is considered as a promising method to join the Cu/Al dissimilar metal for lower residual stress, lower costs, higher precision and better adaption to the structure of joint. Meanwhile, the Zn-Al filler metal is considered as the relatively ideal filler metal due to better property of the Cu/Zn-Al/Al joint. However, the influence of the composition of the Zn-Al filler metal on the interfacial structure near Cu substrate and property of the Cu/Al joint has not been investigated. In this work, the Cu/Al joints were brazed by Zn-15Al, Zn-22Al, Zn-28Al, Zn-37Al and Zn-45Al filler metals, respectively. The influences of the composition of Zn-Al filler metals on the interfacial structure near Cu substrate of the Cu/Al joints were investigated, and the relationships of the composition of the Zn-Al filler metals, the interfacial structure and the shear strength of the Cu/Al joints were described systematically. It was found that the interfacial structure of the Cu/Zn-15Al/Al brazed joint was Cu/Al4.2Cu3.2Zn0.7. For thinner Al4.2Cu3.2Zn0.7 layer (2~3 μm), the shear strength of the joint was higher (66.3 MPa). With the increase of Al content of the filler metal, the thickness of Al4.2Cu3.2Zn0.7 layer at the interface was increased for Cu/Zn-22Al/Al joint, even some CuAl2 phase can be found nearby the Al4.2Cu3.2Zn0.7 layer of Cu/Zn-28Al/Al joint, and the shear strength of the Cu/Al joints were decreased correspondingly. When the Cu/Al joint was brazed by the Zn-37Al filler metal, the interfacial structure near Cu substrate was transformed into Cu/Al4.2Cu3.2Zn0.7/CuAl2. For higher brittleness of CuAl2 layer, the shear strength of the joint was decreased obviously (34.5 MPa). Finally, the interfacial structure of the Cu/Zn-45Al/Al joint was transformed into Cu/CuAl2, the interfacial structure lead to the lower shear strength of the joint, which is only 31.6 MPa.

Key wordsCu/Al joint    brazing    interfacial structure    intermetallic compound    shear strength
    
ZTFLH:  TG425  
基金资助:*广东省科技计划资助项目2010A080402014
作者简介: null

羊 浩, 男, 1981年生, 博士生

Filler metal TS TL TB
Zn-15Al 382 457 487
Zn-22Al 407 490 520
Zn-28Al 423 505 535
Zn-37Al 490 540 570
Zn-45Al 505 559 589
表1  Zn-Al钎料的熔化温度和钎焊温度
图1  接头装配示意图
图2  5种成分Zn-Al钎料钎焊Cu/Al接头中Cu母材/钎缝界面区SEM像
Filler metal Position Atomic fraction / % Possible phase
Al Cu Zn
Zn-15Al A 55.15 34.12 10.23 Al4.2Cu3.2Zn0.7
Zn-22Al B 55.00 35.96 9.03 Al4.2Cu3.2Zn0.7
C 68.34 28.26 3.40 CuAl2
Zn-28Al D 53.77 35.34 10.89 Al4.2Cu3.2Zn0.7
E 67.88 26.77 5.35 CuAl2
Zn-37Al F 55.14 37.59 7.27 Al4.2Cu3.2Zn0.7
G 67.99 29.25 2.77 CuAl2
Zn-45Al H 56.33 38.50 5.17 Al4.2Cu3.2Zn0.7
I 69.09 28.94 1.96 CuAl2
表2  图2中Cu/Al接头界面区物相的EDS分析结果
图3  Cu/Al钎焊接头中Cu母材/钎缝界面区的XRD谱
图4  5种成分Zn-Al钎料钎焊Cu/Al接头的抗剪切强度
图5  5种成分Zn-Al钎料钎焊Cu/Al接头的断口形貌
[1] Liu P, Shi Q Y, Wang W, Wang X, Zhang Z L. Mater Lett, 2008; 62: 4106
[2] Xue P, Ni D R, Wang D, Xiao B L, Ma Z Y. Mater Sci Eng, 2011; A528: 4683
[3] Zuo D, Hu S S, Shen J Q, Xue Z Q. Mater Des, 2014; 58: 357
[4] Mai T A, Spowage A C. Mater Sci Eng, 2004; A374: 224
[5] Xue P, Xiao B L, Ni D R, Ma Z R. Mater Sci Eng, 2010; A527: 5723
[6] Matsuoka S, Imai H. J Mater Process Technol, 2009; 209: 954
[7] Eslami P, Taheri K A. Mater Lett, 2011; 65: 1862
[8] Lee T H, Lee Y J, Park K T, Nersisyan H H, Jeong H G, Lee J H. J Mater Process Technol, 2013; 213: 487
[9] Xia C Z, Li Y J, Puchkov U A, Gerasimov S A, Wang J. Vacuum, 2008; 82: 799
[10] Huang M L, Kang N, Zhou Q, Huang Y Z. J Mater Sci Technol, 2012; 28: 844
[11] Berlanga L C, Albístur G A, Balerdi A P, Gutiérrez P M, Fernández C J. Manuf Process, 2011; 26: 236
[12] Xiao Y, Ji H J, Li M Y, Kim J Y. Mater Des, 2013; 52: 740
[13] Ji F, Xue S B, Dai W. Mater Des, 2012; 42: 156
[14] Ji F, Xue S B, Dai W. Rare Met Mater Eng, 2013; 42: 2453
[15] Zhang Q Y,Zhuang H S. Brazing and Soldering Manual. Beijing: China Machine Press, 2008: 498
[15] (张启运,庄鸿寿. 钎焊手册. 北京: 机械工业出版社, 2008: 498)
[16] Yan X Q, Liu S X, Long W M, Huang J L, Zhang L Y, Chen Y. Mater Lett, 2013; 93: 183
[17] Zhang M, Xue S B, Ji F, Lou Y B, Wang S Q. Trans China Weld Inst, 2011; 32(2): 93
[17] (张 满, 薛松柏, 姬 峰, 娄银斌, 王水庆. 焊接学报, 2011; 32(2): 93)
[18] Zhang M, Xue S B, Ji F, Lou Y B, Wang S Q. Trans China Weld Inst, 2010; 31(9): 73
[18] (张 满, 薛松柏, 姬 峰, 楼银斌, 王水庆. 焊接学报, 2010; 31(9): 73)
[19] Liu R. Master Thesis, Jiangsu University of Science and Technology, ZhenJiang, 2012
[19] (刘 日. 江苏科技大学硕士学位论文, 镇江, 2012)
[20] Yan X Q, Liu S X, Long W M, Huang J L, Zhang L Y, Chen Y. Mater Lett, 2013; 93: 183
[21] Chen Z,Zhou F,Wang G F. Principle of Joining and Welding. Harbin: Harbin Institute of Technology Press, 2001: 166
[21] (陈 铮,周 飞,王国凡. 材料连接原理. 哈尔滨: 哈尔滨工业大学出版社, 2001: 166)
[22] Xu N, Ueji R, Morisada Y, Fujii H. Mater Des, 2014; 56: 20
[23] Yang M, Li M Y, Wang L, Fu Y, Kim J, Weng L. Mater Lett, 2011; 65: 1506
[24] Chen C Y, Hwang W S. Mater Trans, 2007; 48: 1938
[25] Chen C Y, Chen H L, Hwang W S. Mater Trans, 2006; 47: 1232
[26] Jiang H G, Dai J Y, Tong H Y, Ding B Z, Song Q H, Hu Z Q. J Appl Phys, 1993; 74: 6165
[27] Abbasi M, Taheri K A, Salehi M T. J Alloys Compd, 2001; 319: 233
[28] Hang C J, Wang C Q, Mayer M, Tian Y H, Zhou Y, Wang H H. Microelectron Reliab, 2008; 48: 416
[1] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[2] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[3] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[5] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[6] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[7] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[8] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[9] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[10] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[12] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[13] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.