Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 580-586    DOI: 10.11900/0412.1961.2014.00512
  论文 本期目录 | 过刊浏览 |
Mg-Zn-Gd三元铸造镁合金的自由凝固路径选择*
刘少军,杨光昱(),介万奇
西北工业大学凝固技术国家重点实验室, 西安 710072
SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY
Shaojun LIU,Guangyu YANG(),Wanqi JIE
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

刘少军, 杨光昱, 介万奇. Mg-Zn-Gd三元铸造镁合金的自由凝固路径选择*[J]. 金属学报, 2015, 51(5): 580-586.
Shaojun LIU, Guangyu YANG, Wanqi JIE. SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY[J]. Acta Metall Sin, 2015, 51(5): 580-586.

全文: PDF(2542 KB)   HTML
摘要: 

采用实验和数值计算方法, 研究了Mg-4.58Zn-2.6Gd三元铸造镁合金的自由凝固路径选择. 实验结果表明, 当铸型冷却速率≤0.75 K/s时, 合金首先生成的共晶为α(Mg)+W(Mg3Zn3Gd2); 当铸型冷却速率≥7.71 K/s时, 合金首先生成的共晶为α(Mg)+I(Mg3Zn6Gd). 建立了综合考虑合金液相扩散和冷却速率因素的多元合金初生相凝固路径计算模型. 耦合热力学计算软件Thermo-Calc及其数据库获得了Mg-4.58Zn-2.6Gd合金凝固路径计算所需的热力学数据, 发现计算结果与实验结果吻合良好.

关键词 Mg-Zn-Gd三元镁合金凝固路径冷却速率计算模型    
Abstract

Mg-Zn-Gd base alloys possess much superiority, such as, high strength, light weight, low cost, etc., and favorable for the application in various airframe components. Two kinds of eutectic phases, such as, W(Mg3Zn3Gd2) and I(Mg3Zn6Gd), can be usually found in Mg-Zn-Gd alloy under the traditional casting conditions. The interface between W phase and α(Mg) is incoherent and thus weak. However, I phase has quasiperiodic lattice leading to a coherent interface between I phase and α(Mg). Therefore, compared with W phase, I phase is more effective to obstruct dislocations slipping and so efficiently strengthening the alloy. So, controlling the solidification path, i.e., controlling the relative amount of I phase and W phase, is critical for increasing the heat resistant of Mg-Zn-Gd magnesium alloy. In this work, the solidification path of Mg-4.58Zn-2.6Gd ternary casting alloy was investigated by experiments and numerical analysis. Experimental results showed that at lower cooling rate (≤0.75 K/s), α+W(Mg3Zn3Gd2) eutectic will be formed first, while at higher cooling rate (≥7.71 K/s), α(Mg)+I(Mg3Zn6Gd) eutectic will be formed first. A numerical model for predicting solidification path of the primary phase in multi-component alloy with considering the effects of solute diffusion in liquid phase and the cooling rate was developed. The thermodynamic data in the computation model was obtained by using the database of Thermo-Calc. The numerical results were in favorable agreement with the experimental ones. The numerical model established in this work provides a direct and easy way to predict solidification path of Mg-Zn-Gd alloy for different casting conditions. The validity of this model was further confirmed by other three different Mg-Zn-Gd alloys, i.e., Mg-3.8Zn-2.0Gd, Mg-5.5Zn-2.0Gd and Mg-5.5Zn-4Gd. It is also found that for Mg-Zn-Gd alloy, the higher Zn-content and the higher cooling rate will promote the formation of I phase. However, higher Gd-content and the lower cooling rate is favorable for the formation of W phase.

Key wordsMg-Zn-Gd ternary magnesium alloy    solidification path    cooling rate    numerical model
收稿日期: 2014-09-15     
基金资助:* 国家自然科学基金项目51071129和51227001资助
图1  实验用铸型示意图
图2  Mg-4.58Zn-2.6Gd合金在不同铸型中的冷却曲线
图3  不同冷却条件下Mg-4.58Zn-2.6Gd合金的SEM像
Phase Position Zn Gd Mg
Eutectic phase A1 17.01 2.77 80.23
B1 21.59 3.65 74.76
C1 29.94 15.77 54.29
D1 44.13 23.82 32.06
Matrix A2 1.64 0.29 98.07
B2 1.45 0.21 98.34
C2 1.27 0.11 98.62
D2 1.08 0.09 98.83
表1  不同冷却条件下Mg-4.58Zn-2.6Gd合金第二相和基体的EDS分析结果
图4  Mg-4.58Zn-2.6Gd合金在不同铸型中凝固组织的XRD谱
图5  计算得到的Mg-4.58Zn-2.6Gd合金的凝固路径
Parameter Unit Value Ref.
H J ? mol-1 1.09×104 [23]
cp J ? mol-1 ? K-1 161 [23]
DZn m2 ? s-1 5×10-9 [24]
DGd m2 ? s-1 1×10-9 [24]
表2  Mg-Zn-Gd合金计算过程中采用的物性参数[23,24]
图6  不同冷却条件下Mg-4.58Zn-2.6Gd合金凝固相体积分数计算值与实验值的对比
图7  3种合金凝固路径的计算结果
图8  3种合金在金属型和砂型条件下的XRD谱
[1] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J. Acta Metall Sin (Engl Lett), 2008; 21: 313
[2] Huang H, Chen C L, Wang Z C, Li Y P, Yuan G Y. Mater Sci Eng, 2013; A581: 73
[3] Liu Y, Yuan G, Ding W, Lu C. J Alloys Compd, 2007; 427: 160
[4] Yang J, Wang L D, Wang L M, Zhang H J. J Alloys Compd, 2008; 459: 274
[5] Liu Y, Yuan G Y, Lu C, Ding W J. Scr Mater, 2006; 55: 919
[6] Liu Y, Shao S, Xu C S, Zeng X S, Yang X J. Mater Sci Eng, 2013; A588: 76
[7] Liu Y, Yuan G Y, Zhang S, Zhang X P, Ding W J. Mater Trans, 2008; 49: 941
[8] Jie W Q, Zhang R J, He Z. Mater Sci Eng, 2005; A413: 497
[9] Zhao G W, Li X Z, Xu D M, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2011; 47: 1135 (赵光伟, 李新中, 徐达鸣, 傅恒志, 杜 勇, 贺跃辉. 金属学报, 2011; 47: 1135)
[10] Jie W Q,Jian Z Y,Liu L,Yang G Y,Li S M,Shen J,Wang H M. Casting Technology. Beijing: Higher Education Press, 2013: 4 (介万奇,坚增运,刘 林,杨光昱,李双明,沈 军,王华明. 铸造技术. 北京: 高等教育出版社, 2013: 4 )
[11] Wu M, Li J, Ludwig A, Kharcha A. Comp Mater Sci, 2013; 79: 830
[12] Mehrabian R, Flemings M C. Metall Trans, 1970; 1A: 455
[13] Clyne T W, Kurz W. Metall Trans, 1981; 12A: 965
[14] Ohnaka I. Trans ISIJ, 1986; 26: 1045
[15] Kobayashi S. Trans ISIJ, 1988; 28: 728
[16] Liu S J, Yang G Y, Zhang S L, Jie W Q. Spec Casting Nonferrous Alloys, 2011; 31: 278 (刘少军, 杨光昱, 张胜利, 介万奇. 特种铸造及有色合金, 2011; 31: 278)
[17] Sundman B, Jansson B, Andersson J O. Calphad, 1985; 9: 153
[18] Dupont J N, Robino C V, Marder A R. Acta Mater, 1998; 46: 4781
[19] Rappaz M, Boettinger W J. Acta Mater, 1999; 47: 3205
[20] Zhou J X, Yang Y S, Tong W H, Wang J, Fu J W, Wang B. Rare Met Mater Eng, 2010; 39: 1899
[21] Andersson J O, Thomas H, Sundman B. Calphad, 2002; 26: 273
[22] Hillert M. J Alloys Compd, 2001; 320: 161
[23] Qi H Y, Huang G X, Bo H, Xu G L, Liu L B, Jin Z P. J Mater Sci, 2012; 47: 1319
[24] Furer U, Wunderlin R. Metal Solidification. Stuttgart: DGM Fachber, 1977: 1
[25] Zhang R J. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2004 (张瑞杰. 西北工业大学博士学位论文, 西安, 2004)
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[6] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[7] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[8] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[9] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[10] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[11] 牟娟,王东梅,王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响*[J]. 金属学报, 2015, 51(12): 1435-1440.
[12] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[13] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[14] 张龙,张曙光,余建定,李建国. 气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织[J]. 金属学报, 2013, 29(4): 451-456.
[15] 王震,曹,磊,刘仁慈,刘冬,崔玉友,杨,锐. 冷却速率对Ti3Al合金组织和拉伸性能的影响[J]. 金属学报, 2013, 49(11): 1487-1492.